Neural text generation for query expansion in information retrieval

V. Claveau
{"title":"Neural text generation for query expansion in information retrieval","authors":"V. Claveau","doi":"10.1145/3486622.3493957","DOIUrl":null,"url":null,"abstract":"Expanding users’ query is a well-known way to improve the performance of document retrieval systems. Several approaches have been proposed in the literature, and some of them are considered as yielding state-of-the-art results in Information Retrieval. In this paper, we explore the use of text generation to automatically expand the queries. We rely on a well-known neural generative model, OpenAI’s GPT-2, that comes with pre-trained models for English but can also be fine-tuned on specific corpora. Through different experiments and several datasets, we show that text generation is a very effective way to improve the performance of an IR system, with a large margin (+10 %MAP gains), and that it outperforms strong baselines also relying on query expansion (RM3). This conceptually simple approach can easily be implemented on any IR system thanks to the availability of GPT code and models.","PeriodicalId":89230,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3486622.3493957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Expanding users’ query is a well-known way to improve the performance of document retrieval systems. Several approaches have been proposed in the literature, and some of them are considered as yielding state-of-the-art results in Information Retrieval. In this paper, we explore the use of text generation to automatically expand the queries. We rely on a well-known neural generative model, OpenAI’s GPT-2, that comes with pre-trained models for English but can also be fine-tuned on specific corpora. Through different experiments and several datasets, we show that text generation is a very effective way to improve the performance of an IR system, with a large margin (+10 %MAP gains), and that it outperforms strong baselines also relying on query expansion (RM3). This conceptually simple approach can easily be implemented on any IR system thanks to the availability of GPT code and models.
面向信息检索查询扩展的神经文本生成
扩展用户查询是提高文档检索系统性能的一种众所周知的方法。文献中提出了几种方法,其中一些被认为在信息检索中产生了最先进的结果。在本文中,我们探索了使用文本生成来自动扩展查询。我们依赖于一个著名的神经生成模型,OpenAI的GPT-2,它带有预训练的英语模型,但也可以对特定的语料库进行微调。通过不同的实验和几个数据集,我们表明文本生成是一种非常有效的方法来提高红外系统的性能,具有很大的边际(+ 10% MAP增益),并且它优于同样依赖于查询扩展的强基线(RM3)。由于GPT代码和模型的可用性,这种概念上简单的方法可以很容易地在任何IR系统上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信