Visual Localization Using Voting Based Image Retrieval and Particle Filtering in Indoor Scenes

K. Kawamoto, H. Kazama, Kazushi Okamoto
{"title":"Visual Localization Using Voting Based Image Retrieval and Particle Filtering in Indoor Scenes","authors":"K. Kawamoto, H. Kazama, Kazushi Okamoto","doi":"10.1109/RVSP.2013.44","DOIUrl":null,"url":null,"abstract":"We propose an image retrieval based method for visual localization in indoor scenes, provided that a geotagged image database in indoor environments is given. For image retrieval, we introduce a voting based image similarity which is robust to geometric image transformations and occlusions. In order to further improve the performance of image retrieval, we introduce two additional procedures: multiple voting and a ratio test. These two procedures are effective in increasing the true positives and in decreasing the false positives, respectively. In addition, we introduce a particle filter to smoothly estimate the trajectory of a moving camera used for visual localization. In experiments with real images captured at an university library, we show that the proposed method outperforms a structure-from-motion based method.","PeriodicalId":6585,"journal":{"name":"2013 Second International Conference on Robot, Vision and Signal Processing","volume":"1 1","pages":"160-163"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Second International Conference on Robot, Vision and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RVSP.2013.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose an image retrieval based method for visual localization in indoor scenes, provided that a geotagged image database in indoor environments is given. For image retrieval, we introduce a voting based image similarity which is robust to geometric image transformations and occlusions. In order to further improve the performance of image retrieval, we introduce two additional procedures: multiple voting and a ratio test. These two procedures are effective in increasing the true positives and in decreasing the false positives, respectively. In addition, we introduce a particle filter to smoothly estimate the trajectory of a moving camera used for visual localization. In experiments with real images captured at an university library, we show that the proposed method outperforms a structure-from-motion based method.
基于投票的图像检索和粒子滤波的室内场景视觉定位
提出了一种基于图像检索的室内场景视觉定位方法,并给出了室内环境的地理标记图像数据库。在图像检索方面,我们引入了一种基于投票的图像相似度算法,该算法对图像的几何变换和遮挡具有鲁棒性。为了进一步提高图像检索的性能,我们引入了两个额外的过程:多重投票和比率测试。这两种方法分别在增加真阳性和减少假阳性方面是有效的。此外,我们还引入了一个粒子滤波来平滑估计运动摄像机的轨迹,用于视觉定位。在一个大学图书馆的真实图像实验中,我们证明了该方法优于基于运动结构的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信