Antimicrobial effects of Cynara scolymus essential oil: In vitro analysis

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Behnam Karimzadeh Mostafabadi, M. A. Kachoie, E. Rahimi
{"title":"Antimicrobial effects of Cynara scolymus essential oil: In vitro analysis","authors":"Behnam Karimzadeh Mostafabadi, M. A. Kachoie, E. Rahimi","doi":"10.3233/mgc-220006","DOIUrl":null,"url":null,"abstract":"By benefits of using silicon and vermicompost based biofertilizers and also induction of drought stress for growing more efficient medicinal plants, we investigated such issues on growing Cynara scolymus (C. scolymus), as one of the most significant edible medicinal plants. In this regard, the antimicrobial effects of grown C. scolymus essential oil was investigated against some foodborne pathogens. Different concentrations of silicon and vermicompost with and without drought stress were considered for growing the plant and the extracted essential oils were extracted to examine their antimicrobial effects against different bacterial agents. Using vermicompost and silicon and 50% moisture discharge yielded significant increase in the mean diameter of growth inhibition zone and significant decrease in the minimum inhibitory concentration of tested bacteria (P <  0.05). The highest diameters of the inhibition zones of S. aureus, S. saprophyticus, P. aeruginosa, S. dysenteriae, and S. typhi were found for C. scolymus essential oil treated with 8 mmol silicon and conventional irrigation (14.92 mm), 4 mmol silicon and 50% moisture discharge (15.28 mm), 50% vermicompost and 50% moisture discharge (15.71 mm), 8 mmol silicon and conventional irrigation (17.34 mm) and 25% vermicompost, and 50% moisture discharge (15.48 mm), respectively. Antimicrobial effects of some treatments of C. scolymus were higher than some kinds of referenced antibiotics such as erythromycin. These findings could be used for the production of antibiotic drugs for specific purposes against certain bacteria.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3233/mgc-220006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By benefits of using silicon and vermicompost based biofertilizers and also induction of drought stress for growing more efficient medicinal plants, we investigated such issues on growing Cynara scolymus (C. scolymus), as one of the most significant edible medicinal plants. In this regard, the antimicrobial effects of grown C. scolymus essential oil was investigated against some foodborne pathogens. Different concentrations of silicon and vermicompost with and without drought stress were considered for growing the plant and the extracted essential oils were extracted to examine their antimicrobial effects against different bacterial agents. Using vermicompost and silicon and 50% moisture discharge yielded significant increase in the mean diameter of growth inhibition zone and significant decrease in the minimum inhibitory concentration of tested bacteria (P <  0.05). The highest diameters of the inhibition zones of S. aureus, S. saprophyticus, P. aeruginosa, S. dysenteriae, and S. typhi were found for C. scolymus essential oil treated with 8 mmol silicon and conventional irrigation (14.92 mm), 4 mmol silicon and 50% moisture discharge (15.28 mm), 50% vermicompost and 50% moisture discharge (15.71 mm), 8 mmol silicon and conventional irrigation (17.34 mm) and 25% vermicompost, and 50% moisture discharge (15.48 mm), respectively. Antimicrobial effects of some treatments of C. scolymus were higher than some kinds of referenced antibiotics such as erythromycin. These findings could be used for the production of antibiotic drugs for specific purposes against certain bacteria.
猪尾草精油抑菌作用的体外分析
通过利用硅和蚯蚓堆肥为基础的生物肥料,以及诱导干旱胁迫对高效药用植物生长的好处,研究了我国最重要的食用药用植物之一——猪头草(Cynara scolymus, C. scolymus)的种植问题。在此基础上,研究了生长的曲霉精油对食源性病原菌的抑菌作用。考虑不同浓度的硅和蚯蚓堆肥在干旱胁迫和不干旱胁迫下生长,并提取提取的精油,以研究其对不同细菌的抗菌作用。蚯蚓堆肥、硅和50%排湿处理显著增加了抑菌带的平均直径,显著降低了抑菌带的最低抑菌浓度(P < 0.05)。8 mmol硅+常规灌洗(14.92 mm)、4 mmol硅+ 50%排湿(15.28 mm)、50%蚯蚓堆肥+ 50%排湿(15.71 mm)、8 mmol硅+常规灌洗(17.34 mm) + 25%蚯蚓堆肥+ 50%排湿(15.48 mm)对金黄色葡萄球菌、腐生葡萄球菌、铜绿假单胞菌、痢疾葡萄球菌和伤寒葡萄球菌的抑制区直径最大。部分菌株的抑菌效果高于红霉素等参考抗生素。这些发现可以用于生产针对某些细菌的特定目的的抗生素药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信