{"title":"Analysis and design of silicon bipolar distributed oscillators","authors":"A. Hajimiri, Hui Wu","doi":"10.1109/VLSIC.2000.852863","DOIUrl":null,"url":null,"abstract":"A systematic approach to design of silicon bipolar distributed oscillators and voltage-controlled oscillators (VCOs) is presented. The operation of the distributed oscillators is analyzed and the general condition for oscillation is derived, resulting in analytical expressions for the frequency and amplitude of the distributed oscillators. Special attention is paid to transmission line modeling that largely determines the performance of the distributed oscillators. A distributed VCO operating at 12 GHz dissipating 13 mW of power is demonstrated. The VCO has a tuning range of 26% with a phase noise of -104 dBc/Hz at 1 MHz offset from the carrier. A second design shows a 17 GHz bipolar distributed oscillator, which dissipates 9 mW of power.","PeriodicalId":6361,"journal":{"name":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","volume":"52 1","pages":"102-105"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2000.852863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
A systematic approach to design of silicon bipolar distributed oscillators and voltage-controlled oscillators (VCOs) is presented. The operation of the distributed oscillators is analyzed and the general condition for oscillation is derived, resulting in analytical expressions for the frequency and amplitude of the distributed oscillators. Special attention is paid to transmission line modeling that largely determines the performance of the distributed oscillators. A distributed VCO operating at 12 GHz dissipating 13 mW of power is demonstrated. The VCO has a tuning range of 26% with a phase noise of -104 dBc/Hz at 1 MHz offset from the carrier. A second design shows a 17 GHz bipolar distributed oscillator, which dissipates 9 mW of power.