Nanotechnology for lead-free PWB final finishes with the Organic Metal

B. Wessling, J. Kenny
{"title":"Nanotechnology for lead-free PWB final finishes with the Organic Metal","authors":"B. Wessling, J. Kenny","doi":"10.1109/IMPACT.2009.5382243","DOIUrl":null,"url":null,"abstract":"For the first time, a thin layer of only a few nano-meters has been deposited onto copper pads of printed circuit boards which provides effective protection against oxidation and preserves its solderability. The Nano layer has a thickness of nominally only 50 nm, and contains the Organic Metal (conductive polymer) and a small amount of silver. With ≪ 90% (by volume), the Organic Metal is the major component of the deposited layer, Ag is present equivalent to a thickness of 4 nm. This Organic Metal - Ag complex final finish outperforms any established surface finishes.","PeriodicalId":6410,"journal":{"name":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","volume":"23 1","pages":"554-557"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT.2009.5382243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For the first time, a thin layer of only a few nano-meters has been deposited onto copper pads of printed circuit boards which provides effective protection against oxidation and preserves its solderability. The Nano layer has a thickness of nominally only 50 nm, and contains the Organic Metal (conductive polymer) and a small amount of silver. With ≪ 90% (by volume), the Organic Metal is the major component of the deposited layer, Ag is present equivalent to a thickness of 4 nm. This Organic Metal - Ag complex final finish outperforms any established surface finishes.
纳米技术无铅压水板最终饰面与有机金属
首次在印刷电路板的铜衬垫上沉积了一层只有几纳米的薄层,可以有效地防止氧化并保持其可焊性。纳米层的厚度名义上只有50纳米,包含有机金属(导电聚合物)和少量银。有机金属是沉积层的主要成分,其厚度相当于4纳米,占比达90%(按体积计)。这种有机金属-银复合物的最终处理优于任何既定的表面处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信