Hybrid Intra-hour Solar PV Power Forecasting using Statistical and Skycam-based Methods

Jing Huang, M. Khan, Yi Qin, Sam West
{"title":"Hybrid Intra-hour Solar PV Power Forecasting using Statistical and Skycam-based Methods","authors":"Jing Huang, M. Khan, Yi Qin, Sam West","doi":"10.1109/PVSC40753.2019.8980732","DOIUrl":null,"url":null,"abstract":"We propose and test a hybrid solar PV power forecasting model which optimally combines statistical and skycam-based forecasts. We show our model’s capability to produce accurate forecasts seamlessly from 10-s to 10-min ahead using high-frequency measurements in Canberra, Australia. The hybrid model relies on an empirical clear-sky model for solar power and the identification of three condition variables, which are able to separate and model characteristic events associated with them. It significantly overperforms both its statistical component and its skycam component alone, achieving a relative RMSE reduction (forecast skill) of 19% against persistence of clear-sky index at 5-min ahead.","PeriodicalId":6749,"journal":{"name":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","volume":"34 1","pages":"2434-2439"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC40753.2019.8980732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose and test a hybrid solar PV power forecasting model which optimally combines statistical and skycam-based forecasts. We show our model’s capability to produce accurate forecasts seamlessly from 10-s to 10-min ahead using high-frequency measurements in Canberra, Australia. The hybrid model relies on an empirical clear-sky model for solar power and the identification of three condition variables, which are able to separate and model characteristic events associated with them. It significantly overperforms both its statistical component and its skycam component alone, achieving a relative RMSE reduction (forecast skill) of 19% against persistence of clear-sky index at 5-min ahead.
基于统计和skycam的混合小时内太阳能光伏发电预测方法
我们提出并测试了一种混合太阳能光伏发电预测模型,该模型将统计和基于天空摄像机的预测最佳地结合在一起。我们展示了我们的模型在澳大利亚堪培拉使用高频测量提前10- 10分钟无缝生成准确预测的能力。该混合模型依赖于太阳能的经验晴空模型和三个条件变量的识别,这些条件变量能够分离和模拟与之相关的特征事件。它明显优于其统计组件和单独的天空摄像头组件,在持续5分钟的晴空指数下实现相对RMSE降低19%(预测技能)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信