LEAVITT PATH ALGEBRAS OF WEIGHTED AND SEPARATED GRAPHS

Pub Date : 2022-05-11 DOI:10.1017/S1446788722000155
P. Ara
{"title":"LEAVITT PATH ALGEBRAS OF WEIGHTED AND SEPARATED GRAPHS","authors":"P. Ara","doi":"10.1017/S1446788722000155","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated graphs are intimately related. We prove that any Leavitt path algebra \n$L(E,\\omega )$\n of a row-finite vertex weighted graph \n$(E,\\omega )$\n is \n$*$\n -isomorphic to the lower Leavitt path algebra of a certain bipartite separated graph \n$(E(\\omega ),C(\\omega ))$\n . For a general locally finite weighted graph \n$(E, \\omega )$\n , we show that a certain quotient \n$L_1(E,\\omega )$\n of \n$L(E,\\omega )$\n is \n$*$\n -isomorphic to an upper Leavitt path algebra of another bipartite separated graph \n$(E(w)_1,C(w)^1)$\n . We furthermore introduce the algebra \n${L^{\\mathrm {ab}}} (E,w)$\n , which is a universal tame \n$*$\n -algebra generated by a set of partial isometries. We draw some consequences of our results for the structure of ideals of \n$L(E,\\omega )$\n , and we study in detail two different maximal ideals of the Leavitt algebra \n$L(m,n)$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S1446788722000155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper, we show that Leavitt path algebras of weighted graphs and Leavitt path algebras of separated graphs are intimately related. We prove that any Leavitt path algebra $L(E,\omega )$ of a row-finite vertex weighted graph $(E,\omega )$ is $*$ -isomorphic to the lower Leavitt path algebra of a certain bipartite separated graph $(E(\omega ),C(\omega ))$ . For a general locally finite weighted graph $(E, \omega )$ , we show that a certain quotient $L_1(E,\omega )$ of $L(E,\omega )$ is $*$ -isomorphic to an upper Leavitt path algebra of another bipartite separated graph $(E(w)_1,C(w)^1)$ . We furthermore introduce the algebra ${L^{\mathrm {ab}}} (E,w)$ , which is a universal tame $*$ -algebra generated by a set of partial isometries. We draw some consequences of our results for the structure of ideals of $L(E,\omega )$ , and we study in detail two different maximal ideals of the Leavitt algebra $L(m,n)$ .
分享
查看原文
加权图和分离图的Leavitt路径代数
摘要本文证明了加权图的Leavitt路径代数与分离图的Leavitt路径代数是密切相关的。证明了行有限顶点加权图$(E,\)$的任意Leavitt路径代数$L(E,\)$与某二部分离图$(E(\),C(\))$的下Leavitt路径代数$*$ -同构。对于一般的局部有限加权图$(E, \)$,我们证明了$L(E,\)$的某个商$L_1(E,\)$与另一个二部分离图$(E(w)_1,C(w)^1)$的上Leavitt路径代数$*$ -同构。进一步引入了代数${L^{\ mathm {ab}}} (E,w)$,它是由一组部分等距生成的一个泛驯服$*$ -代数。我们给出了L(E,)$理想结构的一些结果,并详细研究了Leavitt代数$L(m,n)$的两种不同的极大理想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信