Can We Ever Get to a 100 nm Tall Library? Power Rail Design for 1nm Technology Node

V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, B. Cheng, S. Parikh, Po-Wen Chan, J. Lee
{"title":"Can We Ever Get to a 100 nm Tall Library? Power Rail Design for 1nm Technology Node","authors":"V. Moroz, X. Lin, P. Asenov, D. Sherlekar, M. Choi, B. Cheng, S. Parikh, Po-Wen Chan, J. Lee","doi":"10.1109/VLSITechnology18217.2020.9265022","DOIUrl":null,"url":null,"abstract":"We explore six different PR (Power Rail) design options in the range of library cell heights from 100 nm to 130 nm for the 1nm design rules (i.e. CPP (Contacted Poly Pitch) of 40 nm and minimum MP (Metal Pitch) of 20 nm). All these design options include 4 tracks for signal routing but different width of the power rails, ranging from conventional power rail design to the power rails having larger thickness than the signal wires on the same metal layer; BPR (Buried Power Rails); and a combination of the conventional and buried power rails. Ru (ruthenium) and Mo (molybdenum) metals with subtractive process (i.e. deposit and etch instead of the damascene process) are considered for both the power rail and the signal routing. The six technology/design options are benchmarked based on PPA (Power-Performance-Area) analysis of a routed GPU (Graphics Processing Unit) logic block operated at HP (High Performance).","PeriodicalId":6850,"journal":{"name":"2020 IEEE Symposium on VLSI Technology","volume":"53 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSITechnology18217.2020.9265022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We explore six different PR (Power Rail) design options in the range of library cell heights from 100 nm to 130 nm for the 1nm design rules (i.e. CPP (Contacted Poly Pitch) of 40 nm and minimum MP (Metal Pitch) of 20 nm). All these design options include 4 tracks for signal routing but different width of the power rails, ranging from conventional power rail design to the power rails having larger thickness than the signal wires on the same metal layer; BPR (Buried Power Rails); and a combination of the conventional and buried power rails. Ru (ruthenium) and Mo (molybdenum) metals with subtractive process (i.e. deposit and etch instead of the damascene process) are considered for both the power rail and the signal routing. The six technology/design options are benchmarked based on PPA (Power-Performance-Area) analysis of a routed GPU (Graphics Processing Unit) logic block operated at HP (High Performance).
我们能建一个100纳米高的图书馆吗?1nm技术节点电源导轨设计
对于1nm设计规则(即CPP(接触聚间距)为40 nm,最小MP(金属间距)为20 nm),我们在库单元高度范围内从100 nm到130 nm探索了六种不同的PR(电源导轨)设计选项。所有这些设计方案包括4条用于信号布线的轨道,但电力轨道的宽度不同,从传统的电力轨道设计到比同一金属层上的信号线厚度更大的电力轨道;埋地电力轨道;以及传统和埋地电力轨道的结合。Ru(钌)和Mo(钼)金属的减法工艺(即沉积和蚀刻,而不是大马士革工艺)被考虑用于电源轨和信号路由。这六种技术/设计选项是基于PPA (Power-Performance-Area)对HP(高性能)运行的路由GPU(图形处理单元)逻辑块的分析进行基准测试的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信