On the Limit of the Positive $\ell$-Degree Turán Problem

IF 0.7 4区 数学 Q2 MATHEMATICS
O. Pikhurko
{"title":"On the Limit of the Positive $\\ell$-Degree Turán Problem","authors":"O. Pikhurko","doi":"10.37236/11912","DOIUrl":null,"url":null,"abstract":"The minimum positive $\\ell$-degree $\\delta^+_{\\ell}(G)$ of a non-empty $k$-graph $G$ is the maximum $m$ such that every $\\ell$-subset of $V(G)$ is contained in either none or at least $m$ edges of~$G$; let $\\delta^+_{\\ell}(G):=0$ if $G$ has no edges. For a family $\\mathcal F$ of $k$-graphs, let $\\mathrm{co^{+}ex}_\\ell(n,\\mathcal F)$ be the maximum of $\\delta^+_{\\ell}(G)$ over all $\\mathcal F$-free $k$-graphs $G$ on $n$ vertices. We prove that the ratio $\\mathrm{co^{+}ex}_\\ell(n,\\mathcal F)/{n-\\ell\\choose k-\\ell}$ tends to limit as $n\\to\\infty$, answering a question of Halfpap, Lemons and Palmer. Also, we show that the limit can be obtained as the value of a natural optimisation problem for $k$-hypergraphons; in fact, we give an alternative description of the set of possible accumulation points of almost extremal $k$-graphs.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"15 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11912","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The minimum positive $\ell$-degree $\delta^+_{\ell}(G)$ of a non-empty $k$-graph $G$ is the maximum $m$ such that every $\ell$-subset of $V(G)$ is contained in either none or at least $m$ edges of~$G$; let $\delta^+_{\ell}(G):=0$ if $G$ has no edges. For a family $\mathcal F$ of $k$-graphs, let $\mathrm{co^{+}ex}_\ell(n,\mathcal F)$ be the maximum of $\delta^+_{\ell}(G)$ over all $\mathcal F$-free $k$-graphs $G$ on $n$ vertices. We prove that the ratio $\mathrm{co^{+}ex}_\ell(n,\mathcal F)/{n-\ell\choose k-\ell}$ tends to limit as $n\to\infty$, answering a question of Halfpap, Lemons and Palmer. Also, we show that the limit can be obtained as the value of a natural optimisation problem for $k$-hypergraphons; in fact, we give an alternative description of the set of possible accumulation points of almost extremal $k$-graphs.
正$\ well $-次Turán问题的极限
非空$k$ -graph $G$的最小正$\ell$ -degree $\delta^+_{\ell}(G)$是$m$的最大值,使得$V(G)$的每个$\ell$ -子集要么不包含$G$边,要么至少包含$m$边;如果$G$没有边,设为$\delta^+_{\ell}(G):=0$。对于一个$k$ -graph族$\mathcal F$,设$\mathrm{co^{+}ex}_\ell(n,\mathcal F)$为$n$顶点上所有$\mathcal F$ -free $k$ -graphs $G$上$\delta^+_{\ell}(G)$的最大值。我们证明了比值$\mathrm{co^{+}ex}_\ell(n,\mathcal F)/{n-\ell\choose k-\ell}$趋向于$n\to\infty$,回答了Halfpap、Lemons和Palmer的问题。此外,我们还证明了极限可以作为$k$ -hypergraphons的自然优化问题的值;事实上,我们给出了几乎极值$k$ -图的可能累加点集的另一种描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信