{"title":"Study on porosity of aramid fiber reinforced composites prepared by additive manufacturing","authors":"Ailing Zou, Z. Shan, Shaozong Wang, Xiaojun Liu, Xueya Ma, Dongming Zou, X. Jiang","doi":"10.1177/26349833221121831","DOIUrl":null,"url":null,"abstract":"Continuous fiber additive manufacturing technology has developed rapidly in recent years, and pore has a great influence on the properties of composites. Through the optimization process of aramid fiber (AF) reinforced composite filament forming, the internal porosity of composites filament was reduced, and stable wire was provided for continuous fiber additive manufacturing. A mathematical model of 0° fiber orientation porosity was established, and the porosity of composites was measured by Micro-CT, and the correctness of the mathematical model was verified with the absolute error of 0.26%, and the relative error of 2.16%. The process parameters of printing speed, printing layer thickness, and printing spacing were designed by orthogonal experiment. The relationship between interlaminar shear properties and porosity of composites with 0° fiber orientation was studied.","PeriodicalId":10608,"journal":{"name":"Composites and Advanced Materials","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites and Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/26349833221121831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous fiber additive manufacturing technology has developed rapidly in recent years, and pore has a great influence on the properties of composites. Through the optimization process of aramid fiber (AF) reinforced composite filament forming, the internal porosity of composites filament was reduced, and stable wire was provided for continuous fiber additive manufacturing. A mathematical model of 0° fiber orientation porosity was established, and the porosity of composites was measured by Micro-CT, and the correctness of the mathematical model was verified with the absolute error of 0.26%, and the relative error of 2.16%. The process parameters of printing speed, printing layer thickness, and printing spacing were designed by orthogonal experiment. The relationship between interlaminar shear properties and porosity of composites with 0° fiber orientation was studied.