Lattice-based computation of boolean functions

M. Altun, Marc D. Riedel
{"title":"Lattice-based computation of boolean functions","authors":"M. Altun, Marc D. Riedel","doi":"10.1145/1837274.1837423","DOIUrl":null,"url":null,"abstract":"This paper studies the implementation of Boolean functions with lattices of two-dimensional switches. Each switch is controlled by a Boolean literal. If the literal is 1, the switch is connected to its four neighbours; else it is not connected. Boolean functions are implemented in terms of connectivity across the lattice: a Boolean function evaluates to 1 iff there exists a top-to-bottom path. The paper addresses the following synthesis problem: how should we map literals to switches in a lattice in order to implement a given target Boolean function? We seek to minimize the number of switches. Also, we aim for an efficient algorithm - one that does not exhaustively enumerate paths. We exploit the concept of lattice and Boolean function duality. We demonstrate a synthesis method that produces lattices with a number of switches that grows linearly with the number of product terms in the function. Our algorithm runs in time that grows polynomially.","PeriodicalId":87346,"journal":{"name":"Proceedings. Design Automation Conference","volume":"40 1","pages":"609-612"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1837274.1837423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper studies the implementation of Boolean functions with lattices of two-dimensional switches. Each switch is controlled by a Boolean literal. If the literal is 1, the switch is connected to its four neighbours; else it is not connected. Boolean functions are implemented in terms of connectivity across the lattice: a Boolean function evaluates to 1 iff there exists a top-to-bottom path. The paper addresses the following synthesis problem: how should we map literals to switches in a lattice in order to implement a given target Boolean function? We seek to minimize the number of switches. Also, we aim for an efficient algorithm - one that does not exhaustively enumerate paths. We exploit the concept of lattice and Boolean function duality. We demonstrate a synthesis method that produces lattices with a number of switches that grows linearly with the number of product terms in the function. Our algorithm runs in time that grows polynomially.
基于格的布尔函数计算
本文研究了二维开关格布尔函数的实现。每个开关由一个布尔字面值控制。如果字面量为1,则开关连接到它的四个相邻开关;否则未连接。布尔函数是根据跨晶格的连通性来实现的:如果存在从上到下的路径,则布尔函数的值为1。本文解决了以下综合问题:为了实现给定的目标布尔函数,我们应该如何将字面量映射到晶格中的开关?我们力求使开关的数量最小化。此外,我们的目标是一个高效的算法-一个不穷尽枚举路径。我们利用格和布尔函数对偶的概念。我们演示了一种合成方法,该方法产生具有许多开关的晶格,这些开关随函数中乘积项的数量线性增长。我们的算法运行在多项式增长的时间内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信