{"title":"Lattice-based computation of boolean functions","authors":"M. Altun, Marc D. Riedel","doi":"10.1145/1837274.1837423","DOIUrl":null,"url":null,"abstract":"This paper studies the implementation of Boolean functions with lattices of two-dimensional switches. Each switch is controlled by a Boolean literal. If the literal is 1, the switch is connected to its four neighbours; else it is not connected. Boolean functions are implemented in terms of connectivity across the lattice: a Boolean function evaluates to 1 iff there exists a top-to-bottom path. The paper addresses the following synthesis problem: how should we map literals to switches in a lattice in order to implement a given target Boolean function? We seek to minimize the number of switches. Also, we aim for an efficient algorithm - one that does not exhaustively enumerate paths. We exploit the concept of lattice and Boolean function duality. We demonstrate a synthesis method that produces lattices with a number of switches that grows linearly with the number of product terms in the function. Our algorithm runs in time that grows polynomially.","PeriodicalId":87346,"journal":{"name":"Proceedings. Design Automation Conference","volume":"40 1","pages":"609-612"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1837274.1837423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
This paper studies the implementation of Boolean functions with lattices of two-dimensional switches. Each switch is controlled by a Boolean literal. If the literal is 1, the switch is connected to its four neighbours; else it is not connected. Boolean functions are implemented in terms of connectivity across the lattice: a Boolean function evaluates to 1 iff there exists a top-to-bottom path. The paper addresses the following synthesis problem: how should we map literals to switches in a lattice in order to implement a given target Boolean function? We seek to minimize the number of switches. Also, we aim for an efficient algorithm - one that does not exhaustively enumerate paths. We exploit the concept of lattice and Boolean function duality. We demonstrate a synthesis method that produces lattices with a number of switches that grows linearly with the number of product terms in the function. Our algorithm runs in time that grows polynomially.