Optimization of defect compensation for extreme ultraviolet lithography mask by covariance-matrix-adaption evolution strategy

IF 1.5 2区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Heng Zhang, Sikun Li, Xiangzhao Wang, Chaoxing Yang, Wei Cheng
{"title":"Optimization of defect compensation for extreme ultraviolet lithography mask by covariance-matrix-adaption evolution strategy","authors":"Heng Zhang, Sikun Li, Xiangzhao Wang, Chaoxing Yang, Wei Cheng","doi":"10.1117/1.JMM.17.4.043505","DOIUrl":null,"url":null,"abstract":"Abstract. Background: Defect compensation is one of the enabling techniques for high-volume manufacturing using extreme ultraviolet lithography. Aim: The advanced evolution strategy algorithm based on covariance matrix adaption is applied to compensation optimization to improve the convergence efficiency and algorithm operability. Approach: The advanced algorithm optimizes the solution population by sampling from the self-adapted covariance matrix of mutation distribution. Results: Optimization simulations for three different masks validated the algorithm’s advantage in convergence efficiency and searching ability compared with original differential evolution, evolution strategy, genetic algorithm (GA), and Nelder–Mead simplex method. The advanced algorithm employs fewer user-defined parameters and is proved to be robust to variations of these parameters. Conclusions: The advanced algorithm obtains better results compared with GA for best-focus, through-focus, and complex-pattern optimizations. With the inherent invariance property, appropriate operability, and robustness, we recommend applying this algorithm to other lithography optimization problems.","PeriodicalId":16522,"journal":{"name":"Journal of Micro/Nanolithography, MEMS, and MOEMS","volume":"1 1","pages":"043505 - 043505"},"PeriodicalIF":1.5000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micro/Nanolithography, MEMS, and MOEMS","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JMM.17.4.043505","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract. Background: Defect compensation is one of the enabling techniques for high-volume manufacturing using extreme ultraviolet lithography. Aim: The advanced evolution strategy algorithm based on covariance matrix adaption is applied to compensation optimization to improve the convergence efficiency and algorithm operability. Approach: The advanced algorithm optimizes the solution population by sampling from the self-adapted covariance matrix of mutation distribution. Results: Optimization simulations for three different masks validated the algorithm’s advantage in convergence efficiency and searching ability compared with original differential evolution, evolution strategy, genetic algorithm (GA), and Nelder–Mead simplex method. The advanced algorithm employs fewer user-defined parameters and is proved to be robust to variations of these parameters. Conclusions: The advanced algorithm obtains better results compared with GA for best-focus, through-focus, and complex-pattern optimizations. With the inherent invariance property, appropriate operability, and robustness, we recommend applying this algorithm to other lithography optimization problems.
基于协方差矩阵自适应进化策略的极紫外光刻掩模缺陷补偿优化
摘要背景:缺陷补偿是极紫外光刻技术大批量生产的使能技术之一。目的:将基于协方差矩阵自适应的先进进化策略算法应用于补偿优化,提高算法的收敛效率和可操作性。方法:该算法通过对突变分布的自适应协方差矩阵进行抽样来优化解总体。结果:三种不同掩模的优化仿真验证了该算法在收敛效率和搜索能力方面优于原始的差分进化、进化策略、遗传算法(GA)和Nelder-Mead单纯形法。该算法使用了较少的用户自定义参数,并且对这些参数的变化具有较强的鲁棒性。结论:与遗传算法相比,该算法在最佳聚焦、全聚焦和复杂模式优化方面取得了更好的效果。该算法具有固有的不变性、良好的可操作性和鲁棒性,可应用于其他光刻优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
30.40%
发文量
0
审稿时长
6-12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信