First‐principle study of the influences of point vacancies (VGa, Hi) on the photocatalytic and magnetic performance of Ga2O3:Li/Na/K systems

Xuefei Bai, Q. Hou, Wencai Li, Mude Qi, Yulan Gu
{"title":"First‐principle study of the influences of point vacancies (VGa, Hi) on the photocatalytic and magnetic performance of Ga2O3:Li/Na/K systems","authors":"Xuefei Bai, Q. Hou, Wencai Li, Mude Qi, Yulan Gu","doi":"10.1002/pssb.202300304","DOIUrl":null,"url":null,"abstract":"Under vacuum environment, an H interstitial must exist when Ga2O3 is prepared by organometallic chemistry vapor deposition. However, few first‐principle systematic studies have been conducted on the influences of point vacancies (VGa, Hi) on the photocatalytic performance and magnetism of Ga2O3: Li or Na or K systems, and VGa is a challenge in experiments. Therefore, the first‐principle generalized gradient approximation GGA + U theory was adopted in this study. A first‐principle study was conducted on the formation energy (E\nf\n), photocatalytic performance, and magnetism of Ga30MO48 (M = Li or Na, or K) and Ga30MHiO48 systems. Results show that under Ga‐poor conditions, the Ga30MO48 and Ga30MHiO48 systems are structurally stable and prone to doping. The Ga30MHiO48 system has lower E\nf\n, more structural stability, and easier doping than the Ga30MO48 system. The Ga30KO48 system exhibits magnetism, mainly generated by the O1−‐2p spin polarized wandering electrons near VGa. The spin polarized O2−‐2p and Ga‐4s states near VGa contribute to the hybrid coupling double‐exchange interaction. Moreover, the visible spectrum of the Ga30LiHiO48 system exhibits a significant red shift, a relatively high carrier activity, carrier separation, and relative maximum lifetime. It is relatively best as a photocatalyst.This article is protected by copyright. All rights reserved.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (b)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssb.202300304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Under vacuum environment, an H interstitial must exist when Ga2O3 is prepared by organometallic chemistry vapor deposition. However, few first‐principle systematic studies have been conducted on the influences of point vacancies (VGa, Hi) on the photocatalytic performance and magnetism of Ga2O3: Li or Na or K systems, and VGa is a challenge in experiments. Therefore, the first‐principle generalized gradient approximation GGA + U theory was adopted in this study. A first‐principle study was conducted on the formation energy (E f ), photocatalytic performance, and magnetism of Ga30MO48 (M = Li or Na, or K) and Ga30MHiO48 systems. Results show that under Ga‐poor conditions, the Ga30MO48 and Ga30MHiO48 systems are structurally stable and prone to doping. The Ga30MHiO48 system has lower E f , more structural stability, and easier doping than the Ga30MO48 system. The Ga30KO48 system exhibits magnetism, mainly generated by the O1−‐2p spin polarized wandering electrons near VGa. The spin polarized O2−‐2p and Ga‐4s states near VGa contribute to the hybrid coupling double‐exchange interaction. Moreover, the visible spectrum of the Ga30LiHiO48 system exhibits a significant red shift, a relatively high carrier activity, carrier separation, and relative maximum lifetime. It is relatively best as a photocatalyst.This article is protected by copyright. All rights reserved.
点空位(VGa, Hi)对Ga2O3:Li/Na/K体系光催化和磁性能影响的第一性原理研究
在真空环境下,采用有机金属化学气相沉积法制备Ga2O3时,必须存在H间隙。然而,关于点空位(VGa, Hi)对Ga2O3: Li或Na或K体系光催化性能和磁性的影响的第一性原理系统研究很少,VGa在实验中是一个挑战。因此,本研究采用第一性原理广义梯度近似GGA + U理论。对Ga30MO48 (M = Li或Na或K)和Ga30MHiO48体系的形成能(Ef)、光催化性能和磁性进行了第一性原理研究。结果表明,在Ga‐poor条件下,Ga30MO48和Ga30MHiO48体系结构稳定,易于掺杂。与Ga30MO48体系相比,Ga30MHiO48体系具有更低的Ef、更高的结构稳定性和更容易掺杂的特点。Ga30KO48体系表现出磁性,主要是由VGa附近的O1−‐2p自旋极化流浪电子产生的。VGa附近的自旋极化O2−‐2p和Ga‐‐4s态有助于杂化耦合双交换相互作用。此外,Ga30LiHiO48体系的可见光谱表现出明显的红移、相对较高的载流子活性、载流子分离和相对最大的寿命。它是相对最好的光催化剂。这篇文章受版权保护。版权所有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信