Harnessing fabrication process signature for predicting yield across designs

A. Ahmadi, H. Stratigopoulos, A. Nahar, Bob Orr, M. Pas, Y. Makris
{"title":"Harnessing fabrication process signature for predicting yield across designs","authors":"A. Ahmadi, H. Stratigopoulos, A. Nahar, Bob Orr, M. Pas, Y. Makris","doi":"10.1109/ISCAS.2016.7527386","DOIUrl":null,"url":null,"abstract":"Yield estimation is an indispensable piece of information at the onset of high-volume manufacturing (HVM) of a device. The increasing demand for faster time-to-market and for designs with growing quality requirements and complexity, requires a quick and successful yield estimation prior to HVM. Prior to commencing HVM, a few early silicon wafers are typically produced and subjected to thorough characterization. One of the objectives of such characterization is yield estimation with better accuracy than what pre-silicon Monte Carlo simulation may offer. In this work, we propose predicting yield of a device using information from a similar previous-generation device, which is manufactured in the same technology node and in the same fabrication facility. For this purpose, we rely on the Bayesian Model Fusion (BMF) technique. The effectiveness of the proposed methodology is evaluated using sizable industrial data from two RF devices in a 65nm technology.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"182 1","pages":"898-901"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Yield estimation is an indispensable piece of information at the onset of high-volume manufacturing (HVM) of a device. The increasing demand for faster time-to-market and for designs with growing quality requirements and complexity, requires a quick and successful yield estimation prior to HVM. Prior to commencing HVM, a few early silicon wafers are typically produced and subjected to thorough characterization. One of the objectives of such characterization is yield estimation with better accuracy than what pre-silicon Monte Carlo simulation may offer. In this work, we propose predicting yield of a device using information from a similar previous-generation device, which is manufactured in the same technology node and in the same fabrication facility. For this purpose, we rely on the Bayesian Model Fusion (BMF) technique. The effectiveness of the proposed methodology is evaluated using sizable industrial data from two RF devices in a 65nm technology.
利用制造过程特征来预测不同设计的良率
良率估计是器件大批量生产开始时必不可少的信息。对更快上市时间的需求不断增长,以及对质量要求和复杂性不断提高的设计,需要在HVM之前快速成功地估算产量。在开始HVM之前,通常会生产一些早期的硅片并进行彻底的表征。这种表征的目标之一是产量比预硅蒙特卡罗模拟可能提供更好的准确性估计。在这项工作中,我们建议使用在相同技术节点和相同制造设施中制造的类似上一代设备的信息来预测设备的良率。为此,我们依靠贝叶斯模型融合(BMF)技术。采用65nm技术的两个射频器件的大量工业数据来评估所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信