Evaluation of Vibration Amplitude Stepping and Welding Performance of 20 kHz and 40 kHz Ultrasonic Power of Metal Welding

Q3 Engineering
Ziad Shakeeb Al Sarraf
{"title":"Evaluation of Vibration Amplitude Stepping and Welding Performance of 20 kHz and 40 kHz Ultrasonic Power of Metal Welding","authors":"Ziad Shakeeb Al Sarraf","doi":"10.30564/JMER.V4I1.2940","DOIUrl":null,"url":null,"abstract":"Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues, with aided of applying force (pressure) and supplied high frequency vibration, a solid-state weld can be generated by ultrasonic metal welding technique. That give a technique the ability to join not only a small components, whereas also to join thicker specimens, depend on a proper control of matching welding conditions. Therefore a welding performance can be study and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz. The analyses of the designed horn are completed through use a vibration mathematical expressions, modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz. The dimensions of the horns were determined to match the selected resonance frequencies, which the lengths were calculated as 132 mm and 66 mm respectively. The analysis of the exciting modal indicates that the axial vibration modes of 19,584Hz and 39,794Hz are obtained in 10th mode, while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns. The weld strength between Al and Cu specimens with a thickness 0.5 mm were evaluated using tensile test, which the analyses were obtained under using different welding pressure and varied amplitudes. The results were recorded within exciting a horn with two different resonance frequencies, show the enhancement of weld strength and quality through control of stepping amplitude, the enhancement means obtain good strength of the weld, reduce sticking horn to specimen, and lower specimen marking.","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/JMER.V4I1.2940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues, with aided of applying force (pressure) and supplied high frequency vibration, a solid-state weld can be generated by ultrasonic metal welding technique. That give a technique the ability to join not only a small components, whereas also to join thicker specimens, depend on a proper control of matching welding conditions. Therefore a welding performance can be study and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz. The analyses of the designed horn are completed through use a vibration mathematical expressions, modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz. The dimensions of the horns were determined to match the selected resonance frequencies, which the lengths were calculated as 132 mm and 66 mm respectively. The analysis of the exciting modal indicates that the axial vibration modes of 19,584Hz and 39,794Hz are obtained in 10th mode, while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns. The weld strength between Al and Cu specimens with a thickness 0.5 mm were evaluated using tensile test, which the analyses were obtained under using different welding pressure and varied amplitudes. The results were recorded within exciting a horn with two different resonance frequencies, show the enhancement of weld strength and quality through control of stepping amplitude, the enhancement means obtain good strength of the weld, reduce sticking horn to specimen, and lower specimen marking.
20 kHz和40 kHz金属焊接超声功率振动幅值步进及焊接性能评价
目前,超声技术被认为是一种强制性的技术,在金属和塑料焊接等许多过程中,它总是被用于克服许多问题,借助于施加的力(压力)和提供的高频振动,超声波金属焊接技术可以产生固态焊缝。这使得一种技术不仅能够连接小部件,而且还能连接较厚的样品,这取决于对匹配焊接条件的适当控制。因此,可以研究和比较设计后的焊接喇叭在20 kHz和40 kHz频率下的焊接性能。利用振动数学表达式、模态分析和谐波分析对所设计的喇叭进行了分析,以确保在工作区域施加超声波功率时的可焊性,并比较了使用20 kHz和40 kHz两种谐振频率时接头的性能。根据所选择的共振频率确定喇叭的尺寸,计算出长度分别为132 mm和66 mm。激振模态分析表明,第10模态得到了19,584Hz和39,794Hz的轴向振动模态,而两个喇叭的频率响应分别记录了19,600 Hz和39,800 Hz的两个频率值。采用拉伸试验对厚度为0.5 mm的Al和Cu试样在不同焊接压力和振幅下的焊接强度进行了评价。结果表明,通过控制步进幅度,可以提高焊缝的强度和质量,从而获得良好的焊缝强度,减少了喇叭对试样的粘接,降低了试样的标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信