Utilization of Minimum Quantity Lubrication (MQL) Chip Fan on SS304 During Milling Process to Increase Carbide Tool Life

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Sifa, T. Endramawan, D. Suwandi, Muhammad Pratama Putra, Muhammad Azwar Amat
{"title":"Utilization of Minimum Quantity Lubrication (MQL) Chip Fan on SS304 During Milling Process to Increase Carbide Tool Life","authors":"A. Sifa, T. Endramawan, D. Suwandi, Muhammad Pratama Putra, Muhammad Azwar Amat","doi":"10.15282/ijame.19.4.2022.04.0778","DOIUrl":null,"url":null,"abstract":"Minimum quantity lubrication (MQL) is the most used recent method in the milling process that is economical and environmentally friendly. The MQL method can reduce the temperature during the milling process. The high temperature that occurs in the carbide tool will affect the tool’s life. The use of cooling fluid is a common method to reduce high temperatures. However, the remaining cooling fluid has an impact on the pollution of the environment. Therefore, in this study, a novel approach for a cooling system based on the combined MQL method and fan cooling device was introduced and called an MQL Chip fan. The effect of the MQL Chip fan on the temperature, tool life, and surface roughness was investigated. The Taylor equation was used to calculate tool life based on temperature data from an experimental investigation. Subsequently, the quality inspection was conducted by using a surface roughness tester. The spindle speed and depth of cut have proven to make a great impact on the peak temperature, but, there is an optimal point where spindle speed made a turbulence and the tool had a passive cooling system. The utilization of the MQL Chip fan has decreased temperature by more than half at a medium speed of 2241 rpm and made a high contribution for low-speed processing and only a slight contribution for high-speed processing. Based on Tool Life prediction, 3600 RPM with a 3 mm depth of cut has more efficient performance compared to 2241 rpm with the same depth of cut. The utilization of the MQL Chip fan contributes significantly to the roughness value; the Ra value decreased from 1.374 μm to 0.461 μm. It has been proven that the utilization of an MQL Chip fan in the milling process reduces temperature and also increases the tool life.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.19.4.2022.04.0778","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Minimum quantity lubrication (MQL) is the most used recent method in the milling process that is economical and environmentally friendly. The MQL method can reduce the temperature during the milling process. The high temperature that occurs in the carbide tool will affect the tool’s life. The use of cooling fluid is a common method to reduce high temperatures. However, the remaining cooling fluid has an impact on the pollution of the environment. Therefore, in this study, a novel approach for a cooling system based on the combined MQL method and fan cooling device was introduced and called an MQL Chip fan. The effect of the MQL Chip fan on the temperature, tool life, and surface roughness was investigated. The Taylor equation was used to calculate tool life based on temperature data from an experimental investigation. Subsequently, the quality inspection was conducted by using a surface roughness tester. The spindle speed and depth of cut have proven to make a great impact on the peak temperature, but, there is an optimal point where spindle speed made a turbulence and the tool had a passive cooling system. The utilization of the MQL Chip fan has decreased temperature by more than half at a medium speed of 2241 rpm and made a high contribution for low-speed processing and only a slight contribution for high-speed processing. Based on Tool Life prediction, 3600 RPM with a 3 mm depth of cut has more efficient performance compared to 2241 rpm with the same depth of cut. The utilization of the MQL Chip fan contributes significantly to the roughness value; the Ra value decreased from 1.374 μm to 0.461 μm. It has been proven that the utilization of an MQL Chip fan in the milling process reduces temperature and also increases the tool life.
在SS304铣削加工过程中使用MQL切屑风扇提高硬质合金刀具寿命
最小量润滑(MQL)是铣削过程中最常用的方法,既经济又环保。MQL法可以降低铣削过程中的温度。硬质合金刀具产生的高温会影响刀具的使用寿命。使用冷却液是降低高温的常用方法。但是,剩余的冷却液对环境的污染有影响。因此,本研究提出了一种基于MQL方法和风扇冷却装置相结合的新型冷却系统,称为MQL芯片风扇。研究了MQL切屑风扇对刀具温度、刀具寿命和表面粗糙度的影响。基于实验研究的温度数据,采用泰勒方程计算刀具寿命。随后,使用表面粗糙度测试仪进行质量检测。主轴速度和切削深度已经被证明对峰值温度有很大的影响,但是,有一个最佳点,主轴速度产生湍流,工具有一个被动冷却系统。MQL Chip风扇的使用,在2241转的中速下,温度降低了一半以上,对低速加工的贡献很大,对高速加工的贡献很小。根据刀具寿命预测,切割深度为3mm的3600 RPM比相同切割深度的2241 RPM具有更高的效率。MQL片式风机的使用对粗糙度值有显著影响;Ra值由1.374 μm降至0.461 μm。事实证明,在铣削过程中使用MQL切屑风扇可以降低温度,提高刀具寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信