{"title":"Mechanical Behavior of Hybrid Laminated Nano Composite Containing Equal Numbers of Glass and Carbon Fiber Plies","authors":"Ava A. K. Mohammed, G. I. Hassan, Younis K. Khdir","doi":"10.15282/ijame.20.2.2023.01.0799","DOIUrl":null,"url":null,"abstract":"Hybrid fiber reinforced polymer with nanofiller composite was introduced into a lot of industries due to its extreme mechanical properties in comparison with non-hybrid material. In this investigation, cross and quasi-fiber laminated epoxy composites with and without nano Al2O3 were fabricated using Vacuum Assisted Resine Infusion Method and Ultrasonic Dual Mixing Method. In general, the results of mechanical properties indicated that the addition of 2% nano Al2O3 enhances the tensile and flexural properties. Cross number 2 with nano Al2O3 laminate had the maximum tensile strength 628 MPa and maximum tensile strain of 1.74%, while cross number 1 with nano Al2O3 laminate had the maximum tensile modulus of 37.756 GPa in the cross group. In the quasi group, quasi number 2 with nano Al2O3 had the maximum tensile strength, maximum tensile strain, and maximum tensile modulus, equal to 294 MPa, 1.98%, and 16.409 GPa, respectively. Regarding the flexural properties, cross number 1 with nano Al2O3 laminate had a maximum flexural strength of 708.2 MPa and maximum flexural strain of 2.027%, while cross number 2 with nano Al2O3 laminate had a maximum flexural modulus of 38.73 GPa in the cross group. On the other hand, quasi number 1 with nano Al2O3 laminate had the maximum flexural strength, maximum flexural strain, and maximum flexural modulus equal to 596 MPa, 2.424%, and 29.2 GPa, respectively in the quasi group. The internal structures of the failure laminated composites through scanning electronic microscopy confirm that the adhesion between fibers and matrix is good.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.2.2023.01.0799","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hybrid fiber reinforced polymer with nanofiller composite was introduced into a lot of industries due to its extreme mechanical properties in comparison with non-hybrid material. In this investigation, cross and quasi-fiber laminated epoxy composites with and without nano Al2O3 were fabricated using Vacuum Assisted Resine Infusion Method and Ultrasonic Dual Mixing Method. In general, the results of mechanical properties indicated that the addition of 2% nano Al2O3 enhances the tensile and flexural properties. Cross number 2 with nano Al2O3 laminate had the maximum tensile strength 628 MPa and maximum tensile strain of 1.74%, while cross number 1 with nano Al2O3 laminate had the maximum tensile modulus of 37.756 GPa in the cross group. In the quasi group, quasi number 2 with nano Al2O3 had the maximum tensile strength, maximum tensile strain, and maximum tensile modulus, equal to 294 MPa, 1.98%, and 16.409 GPa, respectively. Regarding the flexural properties, cross number 1 with nano Al2O3 laminate had a maximum flexural strength of 708.2 MPa and maximum flexural strain of 2.027%, while cross number 2 with nano Al2O3 laminate had a maximum flexural modulus of 38.73 GPa in the cross group. On the other hand, quasi number 1 with nano Al2O3 laminate had the maximum flexural strength, maximum flexural strain, and maximum flexural modulus equal to 596 MPa, 2.424%, and 29.2 GPa, respectively in the quasi group. The internal structures of the failure laminated composites through scanning electronic microscopy confirm that the adhesion between fibers and matrix is good.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.