Electric Field Controlled Itinerant Carrier Spin Polarization in Ferromagnetic Semiconductors

IF 1.5 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Gezahegn Assefa
{"title":"Electric Field Controlled Itinerant Carrier Spin Polarization in Ferromagnetic Semiconductors","authors":"Gezahegn Assefa","doi":"10.1155/2021/6663876","DOIUrl":null,"url":null,"abstract":"Electric field control of magnetic properties has been achieved across a number of different material systems. In diluted magnetic semiconductors (DMSs), ferromagnetic metals, multiferroics, etc., electrical manipulation of magnetism has been observed. Here, we study the effect of an electric field on the carrier spin polarization in DMSs (\n \n GaAsMn\n \n ); in particular, emphasis is given to spin-dependent transport phenomena. In our system, the interaction between the carriers and the localized spins in the presence of electric field is taken as the main interaction. Our results show that the electric field plays a major role on the spin polarization of carriers in the system. This is important for spintronics application.","PeriodicalId":7382,"journal":{"name":"Advances in Condensed Matter Physics","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2021/6663876","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Electric field control of magnetic properties has been achieved across a number of different material systems. In diluted magnetic semiconductors (DMSs), ferromagnetic metals, multiferroics, etc., electrical manipulation of magnetism has been observed. Here, we study the effect of an electric field on the carrier spin polarization in DMSs ( GaAsMn ); in particular, emphasis is given to spin-dependent transport phenomena. In our system, the interaction between the carriers and the localized spins in the presence of electric field is taken as the main interaction. Our results show that the electric field plays a major role on the spin polarization of carriers in the system. This is important for spintronics application.
铁磁半导体中电场控制的载流子自旋极化
电场对磁性能的控制已经在许多不同的材料系统中实现。在稀释磁性半导体(dms)、铁磁性金属、多铁性材料等中,已经观察到磁性的电操纵。本文研究了电场对dms (GaAsMn)中载流子自旋极化的影响;特别强调了与自旋相关的输运现象。在本系统中,载流子与局域自旋在电场作用下的相互作用是主要的相互作用。结果表明,电场对系统中载流子的自旋极化起主要作用。这对自旋电子学的应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Condensed Matter Physics
Advances in Condensed Matter Physics PHYSICS, CONDENSED MATTER-
CiteScore
2.30
自引率
0.00%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Advances in Condensed Matter Physics publishes articles on the experimental and theoretical study of the physics of materials in solid, liquid, amorphous, and exotic states. Papers consider the quantum, classical, and statistical mechanics of materials; their structure, dynamics, and phase transitions; and their magnetic, electronic, thermal, and optical properties. Submission of original research, and focused review articles, is welcomed from researchers from across the entire condensed matter physics community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信