Stability analysis and numerical simulation of non-steady partial differential model in the human pulmonary capillaries using finite differences technique
{"title":"Stability analysis and numerical simulation of non-steady partial differential model in the human pulmonary capillaries using finite differences technique","authors":"M. Derakhshan, Azim Ami̇ataei̇","doi":"10.15672/hujms.1095502","DOIUrl":null,"url":null,"abstract":"In the present study, a mathematical model of non-steady partial differential equation from the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical modelling of this kind of problems lead to a non-steady partial differential equation and for its numerical simulation, we have used finite differences. The aim of the process is the exact numerical analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of doing the process is that, we would like to increase the order of numerical solution to a higher order scheme. An increment in the order of numerical solution makes the numerical simulation more accurate, also makes the numerical simulation being more complicated. In addition, the process of numerical analysis of the study in this order of solution needs more research work.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"388 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1095502","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, a mathematical model of non-steady partial differential equation from the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical modelling of this kind of problems lead to a non-steady partial differential equation and for its numerical simulation, we have used finite differences. The aim of the process is the exact numerical analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of doing the process is that, we would like to increase the order of numerical solution to a higher order scheme. An increment in the order of numerical solution makes the numerical simulation more accurate, also makes the numerical simulation being more complicated. In addition, the process of numerical analysis of the study in this order of solution needs more research work.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.