Stability analysis and numerical simulation of non-steady partial differential model in the human pulmonary capillaries using finite differences technique

IF 0.7 4区 数学 Q2 MATHEMATICS
M. Derakhshan, Azim Ami̇ataei̇
{"title":"Stability analysis and numerical simulation of non-steady partial differential model in the human pulmonary capillaries using finite differences technique","authors":"M. Derakhshan, Azim Ami̇ataei̇","doi":"10.15672/hujms.1095502","DOIUrl":null,"url":null,"abstract":"In the present study, a mathematical model of non-steady partial differential equation from the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical modelling of this kind of problems lead to a non-steady partial differential equation and for its numerical simulation, we have used finite differences. The aim of the process is the exact numerical analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of doing the process is that, we would like to increase the order of numerical solution to a higher order scheme. An increment in the order of numerical solution makes the numerical simulation more accurate, also makes the numerical simulation being more complicated. In addition, the process of numerical analysis of the study in this order of solution needs more research work.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"388 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.1095502","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, a mathematical model of non-steady partial differential equation from the process of oxygen mass transport in the human pulmonary circulation is proposed. Mathematical modelling of this kind of problems lead to a non-steady partial differential equation and for its numerical simulation, we have used finite differences. The aim of the process is the exact numerical analysis of the study, wherein consistency, stability and convergence is proposed. The necessity of doing the process is that, we would like to increase the order of numerical solution to a higher order scheme. An increment in the order of numerical solution makes the numerical simulation more accurate, also makes the numerical simulation being more complicated. In addition, the process of numerical analysis of the study in this order of solution needs more research work.
基于有限差分技术的人肺毛细血管非稳态偏微分模型稳定性分析与数值模拟
本文从人体肺循环中氧质量输运过程出发,建立了非稳态偏微分方程的数学模型。这类问题的数学建模导致了一个非稳态偏微分方程,对于它的数值模拟,我们使用了有限差分。该过程的目的是研究的精确数值分析,其中提出了一致性,稳定性和收敛性。这样做的必要性在于,我们希望将数值解的阶数提高到高阶格式。数值解阶数的增加使数值模拟更加精确,但也使数值模拟更加复杂。此外,数值分析的过程中,在这个顺序的解决方案的研究需要更多的研究工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
6-12 weeks
期刊介绍: Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics. We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信