Measurement of Entropy and Quantum Coherence Properties of Two Type-I Entangled Photonic Qubits

M. A., Madani Sa, Vayaghan Ns
{"title":"Measurement of Entropy and Quantum Coherence Properties of Two Type-I Entangled Photonic Qubits","authors":"M. A., Madani Sa, Vayaghan Ns","doi":"10.21203/RS.3.RS-597657/V1","DOIUrl":null,"url":null,"abstract":"Using the type-I SPDC process in BBO nonlinear crystal (NLC), we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility $ 98.50 \\pm 1.33 ~ \\% $ ($ 87.71 \\pm 4.45 ~ \\% $) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory (HVT), $ S= 2.71 \\pm 0.10 $. Via measuring the coincidence count (CC) rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors (SPDs) around $ (25.5\\pm 3.4) \\% $, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique (MLT), which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/RS.3.RS-597657/V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using the type-I SPDC process in BBO nonlinear crystal (NLC), we generate a polarization-entangled state near to the maximally-entangled Bell-state with high-visibility $ 98.50 \pm 1.33 ~ \% $ ($ 87.71 \pm 4.45 ~ \% $) for HV (DA) basis. We calculate the CHSH version of the Bell inequality, as a nonlocal realism test, and find a strong violation from the classical physics or any hidden variable theory (HVT), $ S= 2.71 \pm 0.10 $. Via measuring the coincidence count (CC) rate in the SPDC process, we obtain the quantum efficiency of single-photon detectors (SPDs) around $ (25.5\pm 3.4) \% $, which is in good agreement to their manufacturer company. As expected, we verify the linear dependency of the CC rate vs. pump power of input CW-laser, which may yield to find the effective second-order susceptibility crystal. Using the theory of the measurement of qubits, includes a tomographic reconstruction of quantum states due to the linear set of 16 polarization-measurement, together with a maximum-likelihood-technique (MLT), which is based on the numerical optimization, we calculate the physical non-negative definite density matrices, which implies on the non-separability and entanglement of prepared state. By having the maximum likelihood density operator, we calculate precisely the entanglement measures such as Concurrence, entanglement of formation, tangle, logarithmic negativity, and different entanglement entropies such as linear entropy, Von-Neumann entropy, and Renyi 2-entropy.
两个i型纠缠光子量子比特的熵和量子相干性测量
利用BBO非线性晶体(NLC)的i型SPDC工艺,我们在HV (DA)基上产生了接近最大纠缠贝尔态的高可见度偏振纠缠态$ 98.50 \pm 1.33 ~ \% $ ($ 87.71 \pm 4.45 ~ \% $)。我们计算了CHSH版本的贝尔不等式,作为一个非局部实在性检验,并发现了经典物理或任何隐变量理论(HVT)的强烈违反,$ S= 2.71 \pm 0.10 $。通过测量SPDC过程中的符合计数(CC)率,我们得到单光子探测器(SPDs)的量子效率约为$ (25.5\pm 3.4) % $,这与制造商的结果很吻合。正如预期的那样,我们验证了CC率与输入cw激光的泵浦功率的线性关系,这可能有助于找到有效的二阶磁化率晶体。利用量子比特测量理论,利用16个偏振测量的线性集对量子态进行层析重建,并结合基于数值优化的最大似然技术(MLT),计算出物理上的非负定密度矩阵,这意味着制备态的不可分性和纠缠性。通过最大似然密度算子,我们精确地计算了纠缠度量,如并发、纠缠形成、纠缠、对数负性,以及不同的纠缠熵,如线性熵、冯-诺伊曼熵和Renyi 2-熵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信