{"title":"Episodic memory recognition of the hippocampus using a deep learning method","authors":"T. Kuremoto","doi":"10.18103/IMR.V7I1.915","DOIUrl":null,"url":null,"abstract":"Hippocampus plays an important role in processing episodic memory. The different patterns of multi-unit activity (MUA) of CA1 neurons in hippocampus corresponds to the different high order functions of the brain such as memory, association, planning, action decision, etc. In this paper, a deep learning model, which is a composition of convolutional neural network (CNN) and support vector machine (SVM), is adopted to classify 4 kinds of episodic memories of a male rat: restraint stress (restraint), contact with a female rat (female), contact with a male rat (male), and contact with a novel object (object). In addition, the characteristic patterns of the different events occurred in CA1 neurons are specified by the feature explanation of CNN using Grad-CAM. As the result, this study suggests that it is available to recognize episodic memories by MUA signals and vice versa.","PeriodicalId":91699,"journal":{"name":"Internal medicine review (Washington, D.C. : Online)","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internal medicine review (Washington, D.C. : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18103/IMR.V7I1.915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Hippocampus plays an important role in processing episodic memory. The different patterns of multi-unit activity (MUA) of CA1 neurons in hippocampus corresponds to the different high order functions of the brain such as memory, association, planning, action decision, etc. In this paper, a deep learning model, which is a composition of convolutional neural network (CNN) and support vector machine (SVM), is adopted to classify 4 kinds of episodic memories of a male rat: restraint stress (restraint), contact with a female rat (female), contact with a male rat (male), and contact with a novel object (object). In addition, the characteristic patterns of the different events occurred in CA1 neurons are specified by the feature explanation of CNN using Grad-CAM. As the result, this study suggests that it is available to recognize episodic memories by MUA signals and vice versa.