J. Kusuma, B. Hayadi, Wanayumini Wanayumini, Rika Rosnelly
{"title":"Komparasi Metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk Klasifikasi Kanker Payudara","authors":"J. Kusuma, B. Hayadi, Wanayumini Wanayumini, Rika Rosnelly","doi":"10.26760/mindjournal.v7i1.51-60","DOIUrl":null,"url":null,"abstract":"ABSTRAKPenyebab kematian utama saat ini di dunia salah satunya dikarenakan oleh penyakit kanker. Menurut data Globocan 2018, dengan tingkat kematian rerata 17 per 100.000 jiwa dan insiden sebanyak 2,1 per 100.000 jiwa untuk kanker payudara yang menyerang wanita di Indonesia. Hal ini menjadikan Indonesia menempati peringkat ke-23 di Asia dan ke-8 di Asia Tenggara. Seiring perkembangan teknologi, sistem berbantuan komputer telah membantu orang di berbagai bidang misalnya di bidang medis. Penentuan jenis kanker payudara menggunakan mechine learning dapat membantu ahli patologi melakukan pemeriksaan secara lebih konsisten dan efisien. Pada penelitian ini, akan dilakukan komparasi metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk klasifikasi kanker payudara. Adapun hasil yang didapatkan menunjukan bahwa, dalam klasifikasi metode Multi Layer Perceptron (MLP) dengan fungsi aktivasi Logistic dan fungsi optimisasi Adam memberikan nilai accuracy, precision dan recall terbaik dibandingkan Support Vector Machine yaitu sebesar 97.7%.Kata kunci: Multi Layer Perceptron (MLP), Aktivasi Logistic, Optimisasi Adam, Support Vector Machine (SVM), Kanker PayudaraABSTRACTThe leading cause of death today in the world is due to cancer. According to Globocan 2018 data, with an average mortality rate of 17 per 100,000 people and an incidence of 2.1 per 100,000 people for breast cancer that affects women in Indonesia. This makes Indonesia ranked 23rd in Asia and 8th in Southeast Asia. As technology has evolved, computer-aided systems have helped people in various fields such as in the medical field. Determination of the type of breast cancer using mechine learning can help pathologists perform examinations more consistently and efficiently. In this study, a comparison of the Multi Layer Perceptron (MLP) and Support Vector Machine (SVM) methods will be carried out for breast cancer classification. The results obtained showed that, in the classification of multi layer perceptron (MLP) methods with logistic activation function and Adam optimization function provides the best accuracy, precision and recall value compared to Support Vector Machine which is 97.7%.Keywords: Multi Layer Perceptron (MLP), Logistic Activation, Adam Optimization, Support Vector Machine (SVM), Breast Cancer","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"BC-22 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v7i1.51-60","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRAKPenyebab kematian utama saat ini di dunia salah satunya dikarenakan oleh penyakit kanker. Menurut data Globocan 2018, dengan tingkat kematian rerata 17 per 100.000 jiwa dan insiden sebanyak 2,1 per 100.000 jiwa untuk kanker payudara yang menyerang wanita di Indonesia. Hal ini menjadikan Indonesia menempati peringkat ke-23 di Asia dan ke-8 di Asia Tenggara. Seiring perkembangan teknologi, sistem berbantuan komputer telah membantu orang di berbagai bidang misalnya di bidang medis. Penentuan jenis kanker payudara menggunakan mechine learning dapat membantu ahli patologi melakukan pemeriksaan secara lebih konsisten dan efisien. Pada penelitian ini, akan dilakukan komparasi metode Multi Layer Perceptron (MLP) dan Support Vector Machine (SVM) untuk klasifikasi kanker payudara. Adapun hasil yang didapatkan menunjukan bahwa, dalam klasifikasi metode Multi Layer Perceptron (MLP) dengan fungsi aktivasi Logistic dan fungsi optimisasi Adam memberikan nilai accuracy, precision dan recall terbaik dibandingkan Support Vector Machine yaitu sebesar 97.7%.Kata kunci: Multi Layer Perceptron (MLP), Aktivasi Logistic, Optimisasi Adam, Support Vector Machine (SVM), Kanker PayudaraABSTRACTThe leading cause of death today in the world is due to cancer. According to Globocan 2018 data, with an average mortality rate of 17 per 100,000 people and an incidence of 2.1 per 100,000 people for breast cancer that affects women in Indonesia. This makes Indonesia ranked 23rd in Asia and 8th in Southeast Asia. As technology has evolved, computer-aided systems have helped people in various fields such as in the medical field. Determination of the type of breast cancer using mechine learning can help pathologists perform examinations more consistently and efficiently. In this study, a comparison of the Multi Layer Perceptron (MLP) and Support Vector Machine (SVM) methods will be carried out for breast cancer classification. The results obtained showed that, in the classification of multi layer perceptron (MLP) methods with logistic activation function and Adam optimization function provides the best accuracy, precision and recall value compared to Support Vector Machine which is 97.7%.Keywords: Multi Layer Perceptron (MLP), Logistic Activation, Adam Optimization, Support Vector Machine (SVM), Breast Cancer