An Effective Algorithm for Extracting Maximal Bipartite Cliques

IF 2.2 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Data Pub Date : 2021-04-05 DOI:10.1145/3460620.3460735
Raghda Fawzey Hriez, Ghazi Al-Naymat, A. Awajan
{"title":"An Effective Algorithm for Extracting Maximal Bipartite Cliques","authors":"Raghda Fawzey Hriez, Ghazi Al-Naymat, A. Awajan","doi":"10.1145/3460620.3460735","DOIUrl":null,"url":null,"abstract":"The reduction of bipartite clique enumeration problem into a clique enumeration problem is a well-known approach for extracting maximal bipartite cliques. In this approach, the graph inflation is used to transform a bipartite graph to a general graph, then any maximal clique enumeration algorithm can be used. However, between every two vertices (in the same set), the traditional inflation algorithm adds a new edge. Therefore incurring high computation overhead, which is impractical and cannot be scaled up to handle large graphs. This paper proposes a new algorithm for extracting maximal bipartite cliques based on an efficient graph inflation algorithm. The proposed algorithm adds the minimal number of edges that are required to convert all maximal bipartite cliques to maximal cliques. The proposed algorithm has been evaluated, using different real world benchmark graphs, according to the correctness of the algorithm, running time (in the inflation and enumeration steps), and according to the overhead of the inflation algorithm on the size of the generated general graph. The empirical evaluation proves that the proposed algorithm is accurate, efficient, effective, and applicable to real world graphs more than the traditional algorithm.","PeriodicalId":36824,"journal":{"name":"Data","volume":"422 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2021-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1145/3460620.3460735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The reduction of bipartite clique enumeration problem into a clique enumeration problem is a well-known approach for extracting maximal bipartite cliques. In this approach, the graph inflation is used to transform a bipartite graph to a general graph, then any maximal clique enumeration algorithm can be used. However, between every two vertices (in the same set), the traditional inflation algorithm adds a new edge. Therefore incurring high computation overhead, which is impractical and cannot be scaled up to handle large graphs. This paper proposes a new algorithm for extracting maximal bipartite cliques based on an efficient graph inflation algorithm. The proposed algorithm adds the minimal number of edges that are required to convert all maximal bipartite cliques to maximal cliques. The proposed algorithm has been evaluated, using different real world benchmark graphs, according to the correctness of the algorithm, running time (in the inflation and enumeration steps), and according to the overhead of the inflation algorithm on the size of the generated general graph. The empirical evaluation proves that the proposed algorithm is accurate, efficient, effective, and applicable to real world graphs more than the traditional algorithm.
一种提取极大二部团的有效算法
将二部团枚举问题简化为团枚举问题是一种众所周知的提取极大二部团的方法。在这种方法中,利用图膨胀将二部图转化为一般图,然后可以使用任意极大团枚举算法。然而,在每两个顶点之间(在同一集合中),传统的膨胀算法会增加一条新边。因此,会产生很高的计算开销,这是不切实际的,也不能扩展到处理大型图形。本文提出了一种基于高效图膨胀算法的极大二部团提取新算法。该算法增加了将所有最大二部团转换为最大团所需的最小边数。使用不同的真实基准图,根据算法的正确性、运行时间(在膨胀和枚举步骤中)以及膨胀算法对生成的一般图大小的开销,对所提出的算法进行了评估。经验评价表明,与传统算法相比,该算法准确、高效、有效,更适用于现实世界的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data
Data Decision Sciences-Information Systems and Management
CiteScore
4.30
自引率
3.80%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信