{"title":"A new class of the generalized Hermite-based polynomials","authors":"M. Ghayasuddin","doi":"10.1515/anly-2022-1090","DOIUrl":null,"url":null,"abstract":"Abstract The main object of this paper is to propose a new class of the Hermite-based polynomials by considering the Wiman (generalized Mittag-Leffler) function. We also indicate some analytical properties of our defined polynomials in a well-ordered way. Moreover, we consider a multi-index generalization of our generalized Hermite-based polynomials in the last section.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"60 1","pages":"201 - 208"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The main object of this paper is to propose a new class of the Hermite-based polynomials by considering the Wiman (generalized Mittag-Leffler) function. We also indicate some analytical properties of our defined polynomials in a well-ordered way. Moreover, we consider a multi-index generalization of our generalized Hermite-based polynomials in the last section.