Application of isotherm models to combined filter systems for the prediction of iron and lead removal from automobile workshop stormwater runoff

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. O. Ataguba, Isobel Brink
{"title":"Application of isotherm models to combined filter systems for the prediction of iron and lead removal from automobile workshop stormwater runoff","authors":"C. O. Ataguba, Isobel Brink","doi":"10.17159/wsa/2022.v48.i4.3971","DOIUrl":null,"url":null,"abstract":"Langmuir and Freundlich isotherm adsorption models were used to predict iron and lead removal from automobile workshop stormwater runoff. Combined low-cost filter systems consisting of granular activated carbon–rice husk (GAC–RH) and river gravel–granular activated carbon (GR–GAC) were used in this study. The effects of adsorbent dosage and contact time on the adsorption capacity of the adsorbents, as well as the removal efficiencies of the adsorbent systems, were also investigated. The results for the Langmuir model generally showed favourable adsorption processes., with all RL values < 1 (in the range 0.358–0.518). The Langmuir model gave better predictions for iron and lead removal, with high R2 values (in the range 0.842–0.969), while the root mean square error (RMSE) values ranged from 0.002 to 2.366. The Freundlich model parameters indicated chemisorption processes with all n values < 1 (in the range 0.1296–0.4675). R2 values were in the range of 0.634–0.916 while RMSE values ranged from 0.002 to 0.1765. Additionally, the removal efficiencies for iron and lead using GAC–RH filter system (54% and 48%, respectively) were found to be higher than those obtained using GR–GAC filter system (35% and 25%, respectively). The adsorption capacities of the adsorbents decreased with increased dosages of the adsorbent, with optimum adsorbent dosage of 0.5 g and equilibrium contact time of 80 min for the combined filter adsorbents. Further research towards modifying adsorbents for removal of oil and grease from polluted automobile workshop stormwater runoff are warranted.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.17159/wsa/2022.v48.i4.3971","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Langmuir and Freundlich isotherm adsorption models were used to predict iron and lead removal from automobile workshop stormwater runoff. Combined low-cost filter systems consisting of granular activated carbon–rice husk (GAC–RH) and river gravel–granular activated carbon (GR–GAC) were used in this study. The effects of adsorbent dosage and contact time on the adsorption capacity of the adsorbents, as well as the removal efficiencies of the adsorbent systems, were also investigated. The results for the Langmuir model generally showed favourable adsorption processes., with all RL values < 1 (in the range 0.358–0.518). The Langmuir model gave better predictions for iron and lead removal, with high R2 values (in the range 0.842–0.969), while the root mean square error (RMSE) values ranged from 0.002 to 2.366. The Freundlich model parameters indicated chemisorption processes with all n values < 1 (in the range 0.1296–0.4675). R2 values were in the range of 0.634–0.916 while RMSE values ranged from 0.002 to 0.1765. Additionally, the removal efficiencies for iron and lead using GAC–RH filter system (54% and 48%, respectively) were found to be higher than those obtained using GR–GAC filter system (35% and 25%, respectively). The adsorption capacities of the adsorbents decreased with increased dosages of the adsorbent, with optimum adsorbent dosage of 0.5 g and equilibrium contact time of 80 min for the combined filter adsorbents. Further research towards modifying adsorbents for removal of oil and grease from polluted automobile workshop stormwater runoff are warranted.
等温线模型在联合过滤系统预测汽车车间雨水径流除铁除铅中的应用
采用Langmuir和Freundlich等温吸附模型预测了汽车车间雨水径流中铁和铅的去除效果。采用颗粒活性炭-稻壳(GAC-RH)和河卵石-颗粒活性炭(GR-GAC)组成的低成本复合过滤系统。考察了吸附剂用量和接触时间对吸附剂吸附性能的影响,以及吸附体系的去除率。Langmuir模型的结果普遍表明吸附过程有利。, RL值均< 1(0.358 ~ 0.518)。Langmuir模型对铁和铅去除的预测效果更好,R2值较高(在0.842-0.969之间),均方根误差(RMSE)值在0.002 - 2.366之间。Freundlich模型参数表明,n值均< 1(0.1296 ~ 0.4675)的化学吸附过程。R2值为0.634 ~ 0.916,RMSE值为0.002 ~ 0.1765。此外,使用GAC-RH过滤系统对铁和铅的去除率(分别为54%和48%)高于使用GR-GAC过滤系统(分别为35%和25%)。随着吸附剂用量的增加,吸附剂的吸附能力下降,最佳吸附剂用量为0.5 g,组合过滤吸附剂的平衡接触时间为80 min。进一步研究改性吸附剂对汽车车间雨水径流中油脂的去除效果是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信