{"title":"Vitamin E encapsulated nano-emulsions formulation, rheological and antimicrobial analysis","authors":"V. Prakash, Lipika Parida","doi":"10.55522/jmpas.v12i3.5019","DOIUrl":null,"url":null,"abstract":"Vitamin E is an important food ingredient that individuals ingest to help prevent numerous diseases. Nano-emulsions are frequently employed in pharmaceutical, food, and personal care applications as means of delivering a variety of lipophilic active substances, namely vitamins that are oil-soluble. Both high-energy and low-energy methods are used to create nano-emulsions. The latter, however, offers advantages including less cost, convenience of use, and increased energy efficiency. In this work, we used the emulsion phase inversion technique to create nano-emulsions containing vitamin E. We investigated the rheological and physical characteristics of nano-emulsions created at different stirring rates ranging from 30 to 110 minutes. The emulsion phase inversion approach mixes an organic phase made up of oil, vitamin E, and a surfactant with an aqueous phase. The droplet size, zeta potential, and rheology of all the nano-emulsions were measured. The size distribution of nano-emulsions was measured in the particle size examination method utilizing dynamic light scattering and average droplet diameter was observed to be within a range of 141 nm to 177 nm and to follow a sequence: 110 < 70 < 30 min. The lowest droplet size, 141 nm, with a polydispersity index of 0.234, was obtained at 110 minutes. The zeta potential of formulated nano-emulsions ranged from – 7.1 m to – 14.3 mV. The rheological properties of nano-emulsions revealed non-Newtonian flow behavior. The antimicrobial test of nano-emulsions was examined with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the emulsions were resistant to S. aureus.","PeriodicalId":16445,"journal":{"name":"Journal of Medical pharmaceutical and allied sciences","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical pharmaceutical and allied sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55522/jmpas.v12i3.5019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin E is an important food ingredient that individuals ingest to help prevent numerous diseases. Nano-emulsions are frequently employed in pharmaceutical, food, and personal care applications as means of delivering a variety of lipophilic active substances, namely vitamins that are oil-soluble. Both high-energy and low-energy methods are used to create nano-emulsions. The latter, however, offers advantages including less cost, convenience of use, and increased energy efficiency. In this work, we used the emulsion phase inversion technique to create nano-emulsions containing vitamin E. We investigated the rheological and physical characteristics of nano-emulsions created at different stirring rates ranging from 30 to 110 minutes. The emulsion phase inversion approach mixes an organic phase made up of oil, vitamin E, and a surfactant with an aqueous phase. The droplet size, zeta potential, and rheology of all the nano-emulsions were measured. The size distribution of nano-emulsions was measured in the particle size examination method utilizing dynamic light scattering and average droplet diameter was observed to be within a range of 141 nm to 177 nm and to follow a sequence: 110 < 70 < 30 min. The lowest droplet size, 141 nm, with a polydispersity index of 0.234, was obtained at 110 minutes. The zeta potential of formulated nano-emulsions ranged from – 7.1 m to – 14.3 mV. The rheological properties of nano-emulsions revealed non-Newtonian flow behavior. The antimicrobial test of nano-emulsions was examined with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the emulsions were resistant to S. aureus.