High-Throughput First-Principles Search for Ceramic Superlattices with Improved Ductility and Fracture Resistance

N. Koutná, Alexander W. Brenner, D. Holec, P. Mayrhofer
{"title":"High-Throughput First-Principles Search for Ceramic Superlattices with Improved Ductility and Fracture Resistance","authors":"N. Koutná, Alexander W. Brenner, D. Holec, P. Mayrhofer","doi":"10.2139/ssrn.3683517","DOIUrl":null,"url":null,"abstract":"Abstract Superlattices—alternating coherently grown materials of nm thicknesses—proved their potential for enhancing typically antagonistic properties of ceramics: ductility, hardness, and fracture toughness. Material selection, however, is far from trivial, as superlattice films do not simply combine mechanical properties of their layer components. Here we employ high-throughput density functional theory calculations to develop design guidelines for nanolaminates combining cubic transition metal nitride and/or carbide ceramics. Out of 153 MX/M*X* superlattices (M, M* = Al, Ti, Zr, Hf, Nb, V, Ta, Mo, W, and X, X* = C, N) 145 are chemically and mechanically stable and most often contain vacancies on the non-metallic sublattice. Superior ductility together with moderate-to-high fracture toughness and interface strength (above that of the cubic TiN) narrow the set of perspective candidates. Key ingredients promoting the interface-induced enhancement of hardness and/or fracture toughness are lattices parameter and shear modulus mismatch of the layer components. Adding the requirement of phonon stability yields MoN/M*N, M* = Nb, Ta, Ti; TiN/WN (nitrides); HfC/M*N, M* = Mo, W; NbC/M*N, M* = Mo, W; TaC/M*N, M* = Mo, W; VC/M*N, M* = Hf, Ta, Zr (carbonitrides); as the top candidates for novel superlattice films.","PeriodicalId":18268,"journal":{"name":"Materials Engineering eJournal","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3683517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Abstract Superlattices—alternating coherently grown materials of nm thicknesses—proved their potential for enhancing typically antagonistic properties of ceramics: ductility, hardness, and fracture toughness. Material selection, however, is far from trivial, as superlattice films do not simply combine mechanical properties of their layer components. Here we employ high-throughput density functional theory calculations to develop design guidelines for nanolaminates combining cubic transition metal nitride and/or carbide ceramics. Out of 153 MX/M*X* superlattices (M, M* = Al, Ti, Zr, Hf, Nb, V, Ta, Mo, W, and X, X* = C, N) 145 are chemically and mechanically stable and most often contain vacancies on the non-metallic sublattice. Superior ductility together with moderate-to-high fracture toughness and interface strength (above that of the cubic TiN) narrow the set of perspective candidates. Key ingredients promoting the interface-induced enhancement of hardness and/or fracture toughness are lattices parameter and shear modulus mismatch of the layer components. Adding the requirement of phonon stability yields MoN/M*N, M* = Nb, Ta, Ti; TiN/WN (nitrides); HfC/M*N, M* = Mo, W; NbC/M*N, M* = Mo, W; TaC/M*N, M* = Mo, W; VC/M*N, M* = Hf, Ta, Zr (carbonitrides); as the top candidates for novel superlattice films.
高通量第一性原理研究提高延展性和抗断裂性能的陶瓷超晶格
摘要超晶格——纳米厚度的交替相干生长材料——证明了它们在增强陶瓷的典型拮抗性能方面的潜力:延展性、硬度和断裂韧性。然而,材料的选择远非微不足道,因为超晶格薄膜并不是简单地结合其层组件的机械性能。在这里,我们采用高通量密度泛函理论计算来开发结合立方过渡金属氮化物和/或碳化物陶瓷的纳米层合材料的设计指南。在153个MX/M*X*超晶格(M, M* = Al, Ti, Zr, Hf, Nb, V, Ta, Mo, W和X, X* = C, N)中,145个是化学和机械稳定的,并且大多数在非金属亚晶格上含有空位。优异的延展性以及中高的断裂韧性和界面强度(高于立方TiN)缩小了候选材料的范围。促进界面诱导硬度和/或断裂韧性增强的关键因素是层组分的晶格参数和剪切模量失配。加入声子稳定性要求得到MoN/M*N, M* = Nb, Ta, Ti;锡/ WN(氮化物);HfC/M*N, M* = Mo, W;NbC/M*N, M* = Mo, W;TaC/M*N, M* = Mo, W;VC/M*N, M* = Hf, Ta, Zr(碳氮化物);作为新型超晶格薄膜的首选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信