An algorithm for targeted convergence of Euler or Newton iterations

René Thomas , Richard d’Ari
{"title":"An algorithm for targeted convergence of Euler or Newton iterations","authors":"René Thomas ,&nbsp;Richard d’Ari","doi":"10.1016/S0764-4469(00)01303-2","DOIUrl":null,"url":null,"abstract":"<div><p>The concept of multistationarity has become essential for understanding cell differentiation. For this reason theoretical biologists have more and more frequently to determine the steady values, often multiple, of systems of non-linear differential equations. It is well known that iteration processes of current use converge or not towards a fixed point depending on the absolute value of the slope of the iteration function in the vicinity of the considered fixed point. A number of methods have been developed to obtain or accelerate convergence. As biologists, we do not pretend to review these works. Rather, we propose here a simple algorithm which permits to converge at will towards a chosen type of steady state. Others and we have used this procedure extensively for years for the analysis of complex biological systems. A compact program (using Mathematica) is available.</p></div>","PeriodicalId":100306,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie","volume":"324 4","pages":"Pages 285-296"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4469(00)01303-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764446900013032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The concept of multistationarity has become essential for understanding cell differentiation. For this reason theoretical biologists have more and more frequently to determine the steady values, often multiple, of systems of non-linear differential equations. It is well known that iteration processes of current use converge or not towards a fixed point depending on the absolute value of the slope of the iteration function in the vicinity of the considered fixed point. A number of methods have been developed to obtain or accelerate convergence. As biologists, we do not pretend to review these works. Rather, we propose here a simple algorithm which permits to converge at will towards a chosen type of steady state. Others and we have used this procedure extensively for years for the analysis of complex biological systems. A compact program (using Mathematica) is available.

欧拉或牛顿迭代的目标收敛算法
多平稳性的概念已经成为理解细胞分化的必要条件。因此,理论生物学家越来越频繁地需要确定非线性微分方程系统的稳定值,通常是多个稳定值。众所周知,当前使用的迭代过程收敛与否取决于迭代函数在所考虑的不动点附近的斜率的绝对值。已经开发了许多方法来获得或加速收敛。作为生物学家,我们不会假装审查这些工作。相反,我们在这里提出一个简单的算法,它允许向选定的稳态类型任意收敛。其他人和我们多年来一直广泛使用这种方法来分析复杂的生物系统。可以使用一个紧凑的程序(使用Mathematica)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信