A Comparative Study of Meta-heuristic Algorithms in Supply Chain Networks

Q2 Engineering
F. Salahi, A. Daneshvar, M. Homayounfar, M. Shokouhifar
{"title":"A Comparative Study of Meta-heuristic Algorithms in Supply Chain Networks","authors":"F. Salahi, A. Daneshvar, M. Homayounfar, M. Shokouhifar","doi":"10.30495/JIEI.2021.1919032.1076","DOIUrl":null,"url":null,"abstract":"Today, with the development of Information Technology (IT) and economic globalization, the suppliers’ selection has been emphasized in supply chain systems. Accordingly, artificial intelligence-based methods have attracted much attention. Hence, in this research, the selection of appropriate suppliers with respect to the multi-resource supply policy, and the implementation of lateral transshipment have been studied, and meta-heuristic algorithms have been employed to solve the problem. In the proposed method, the supply chain network is improved by minimizing the inventory shortages through utilizing lateral transshipment between different factories. In order to efficiently solve the problem, a hybrid meta-heuristic algorithm based on population-based genetic algorithm (GA) and single-solution simulated annealing (SA), named GASA, is propose, in order to simultaneously gain with the advantages of both algorithms, i.e., global search ability of GA and local search ability of SA. In order to compare the results of the proposed GASA, it is compared with GA and SA, to find the best solution. Given the parameters optimization and conducted analyses and comparisons of primary and hybrid algorithms performance, the hybrid GASA algorithm has been identified as the most efficient algorithm to solve the problem,compared to the other algorithms, emphasizing cost reduction and shortage volume.","PeriodicalId":37850,"journal":{"name":"Journal of Industrial Engineering International","volume":"58 1","pages":"52-62"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Engineering International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30495/JIEI.2021.1919032.1076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Today, with the development of Information Technology (IT) and economic globalization, the suppliers’ selection has been emphasized in supply chain systems. Accordingly, artificial intelligence-based methods have attracted much attention. Hence, in this research, the selection of appropriate suppliers with respect to the multi-resource supply policy, and the implementation of lateral transshipment have been studied, and meta-heuristic algorithms have been employed to solve the problem. In the proposed method, the supply chain network is improved by minimizing the inventory shortages through utilizing lateral transshipment between different factories. In order to efficiently solve the problem, a hybrid meta-heuristic algorithm based on population-based genetic algorithm (GA) and single-solution simulated annealing (SA), named GASA, is propose, in order to simultaneously gain with the advantages of both algorithms, i.e., global search ability of GA and local search ability of SA. In order to compare the results of the proposed GASA, it is compared with GA and SA, to find the best solution. Given the parameters optimization and conducted analyses and comparisons of primary and hybrid algorithms performance, the hybrid GASA algorithm has been identified as the most efficient algorithm to solve the problem,compared to the other algorithms, emphasizing cost reduction and shortage volume.
供应链网络中元启发式算法的比较研究
在信息技术发展和经济全球化的今天,供应商的选择在供应链系统中受到重视。因此,基于人工智能的方法备受关注。因此,本文研究了多资源供应政策下合适供应商的选择和横向转运的实施问题,并采用元启发式算法求解该问题。在该方法中,通过利用不同工厂之间的横向转运来最小化库存短缺,从而改进了供应链网络。为了有效地解决这一问题,提出了一种基于种群遗传算法(GA)和单解模拟退火算法(SA)的混合元启发式算法(GASA),以同时获得遗传算法的全局搜索能力和单解模拟退火算法的局部搜索能力。为了比较所提出的遗传算法的结果,将其与遗传算法和遗传算法进行比较,找出最优解。在参数优化的基础上,对主要算法和混合算法的性能进行了分析和比较,与其他算法相比,混合GASA算法被认为是最有效的解决问题的算法,强调降低成本和短缺量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Industrial Engineering International
Journal of Industrial Engineering International Engineering-Industrial and Manufacturing Engineering
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊介绍: Journal of Industrial Engineering International is an international journal dedicated to the latest advancement of industrial engineering. The goal of this journal is to provide a platform for engineers and academicians all over the world to promote, share, and discuss various new issues and developments in different areas of industrial engineering. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted articles will immediately appear online. The journal publishes original research articles, review articles, technical notes, case studies and letters to the Editor, including but not limited to the following fields: Operations Research and Decision-Making Models, Production Planning and Inventory Control, Supply Chain Management, Quality Engineering, Applications of Fuzzy Theory in Industrial Engineering, Applications of Stochastic Models in Industrial Engineering, Applications of Metaheuristic Methods in Industrial Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信