{"title":"Effect of Dynamic Coupling of Liquid Propellant Sloshing on the Response at Critical Locations of a Typical Liquid Propellant Rocket","authors":"Ganga S, Deepthy S Nair, Rojan Mathew","doi":"10.14445/23488360/ijme-v10i6p105","DOIUrl":null,"url":null,"abstract":"- Liquid propellant rocket utilizes an engine that uses liquid as a propellant. In liquid propellant rockets, fuel and oxidizer are pumped into the combustion chamber, where they get mixed and burned. Liquid hydrogen is mainly used as fuel, and liquid oxygen is used as an oxidizer. Slosh can occur with liquid propellants. Slosh acts as a tuned damper and helps in reducing the dynamic response of the vehicle. Slosh baffles in the tanks and intelligent control rules in the guidance system can be used to control this. A potential source of disturbance that is vital to the stability of spacecraft is the propellant slosh. A mechanical model of a spring-mass-damper system is commonly used to represent the sloshing dynamics. Modelling of a typical liquid propellant rocket propellant is done in MSC NASTRAN / PATRAN software. Dynamic characterization of liquid propellant rockets with and without propellant is carried out. Transient analysis on launch vehicles with propellant is carried out, and responses at critical locations are estimated. In this project, the structural dynamic characterization and response at critical locations of a liquid propellant rocket are conducted. The main objective of the project is to study the effect of coupling between the propellant sloshing and the vehicle modes.","PeriodicalId":39952,"journal":{"name":"International Journal of Mechanical Engineering Education","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14445/23488360/ijme-v10i6p105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
- Liquid propellant rocket utilizes an engine that uses liquid as a propellant. In liquid propellant rockets, fuel and oxidizer are pumped into the combustion chamber, where they get mixed and burned. Liquid hydrogen is mainly used as fuel, and liquid oxygen is used as an oxidizer. Slosh can occur with liquid propellants. Slosh acts as a tuned damper and helps in reducing the dynamic response of the vehicle. Slosh baffles in the tanks and intelligent control rules in the guidance system can be used to control this. A potential source of disturbance that is vital to the stability of spacecraft is the propellant slosh. A mechanical model of a spring-mass-damper system is commonly used to represent the sloshing dynamics. Modelling of a typical liquid propellant rocket propellant is done in MSC NASTRAN / PATRAN software. Dynamic characterization of liquid propellant rockets with and without propellant is carried out. Transient analysis on launch vehicles with propellant is carried out, and responses at critical locations are estimated. In this project, the structural dynamic characterization and response at critical locations of a liquid propellant rocket are conducted. The main objective of the project is to study the effect of coupling between the propellant sloshing and the vehicle modes.
期刊介绍:
The International Journal of Mechanical Engineering Education is aimed at teachers and trainers of mechanical engineering students in higher education and focuses on the discussion of the principles and practices of training professional, technical and mechanical engineers and those in related fields. It encourages articles about new experimental methods, and laboratory techniques, and includes book reviews and highlights of recent articles in this field.