Twisting, mutation and knot Floer homology

IF 1 2区 数学 Q1 MATHEMATICS
Quantum Topology Pub Date : 2016-08-05 DOI:10.4171/QT/119
Peter Lambert-Cole
{"title":"Twisting, mutation and knot Floer homology","authors":"Peter Lambert-Cole","doi":"10.4171/QT/119","DOIUrl":null,"url":null,"abstract":"Let $\\mathcal{L}$ be a knot with a fixed positive crossing and $\\mathcal{L}_n$ the link obtained by replacing this crossing with $n$ positive twists. We prove that the knot Floer homology $\\widehat{\\text{HFK}}(\\mathcal{L}_n)$ `stabilizes' as $n$ goes to infinity. This categorifies a similar stabilization phenomenon of the Alexander polynomial. As an application, we construct an infinite family of prime, positive mutant knots with isomorphic bigraded knot Floer homology groups. Moreover, given any pair of positive mutants, we describe how to derive a corresponding infinite family positive mutants with isomorphic bigraded $\\widehat{\\text{HFK}}$ groups, Seifert genera, and concordance invariant $\\tau$.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"4 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2016-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

Let $\mathcal{L}$ be a knot with a fixed positive crossing and $\mathcal{L}_n$ the link obtained by replacing this crossing with $n$ positive twists. We prove that the knot Floer homology $\widehat{\text{HFK}}(\mathcal{L}_n)$ `stabilizes' as $n$ goes to infinity. This categorifies a similar stabilization phenomenon of the Alexander polynomial. As an application, we construct an infinite family of prime, positive mutant knots with isomorphic bigraded knot Floer homology groups. Moreover, given any pair of positive mutants, we describe how to derive a corresponding infinite family positive mutants with isomorphic bigraded $\widehat{\text{HFK}}$ groups, Seifert genera, and concordance invariant $\tau$.
扭转,突变和结花同源
设$\mathcal{L}$为具有固定正交叉的结,$\mathcal{L}_n$为用$n$正扭转代替该交叉得到的链接。证明了结花同调$\widehat{\text{HFK}}(\mathcal{L}_n)$在$n$趋于无穷时趋于稳定。这分类了一个类似的Alexander多项式的稳定现象。作为应用,我们构造了一个具有同构梯度结花同调群的无穷素数正突变结族。此外,对于任意一对正突变体,我们描述了如何推导出具有同构的等价$\widehat{\text{HFK}}$群、Seifert属和一致性不变量$\tau$的无限族正突变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Topology
Quantum Topology Mathematics-Geometry and Topology
CiteScore
1.80
自引率
9.10%
发文量
8
期刊介绍: Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular: Low-dimensional Topology Knot Theory Jones Polynomial and Khovanov Homology Topological Quantum Field Theory Quantum Groups and Hopf Algebras Mapping Class Groups and Teichmüller space Categorification Braid Groups and Braided Categories Fusion Categories Subfactors and Planar Algebras Contact and Symplectic Topology Topological Methods in Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信