{"title":"Effects of amorphous silicon atomic density variation on series and contact resistances in nanoscale thin-film structures","authors":"M. Ryu, Sung-Ho Kim, Kyung Rok Kim","doi":"10.1109/SNW.2012.6243300","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the effects of amorphous silicon (a-Si) mass density variations on the electrical series and contact resistance of nanoscale structures for thin-film transistors (TFTs). Impurity distributions according to the variation of a-Si mass density (ρa-Si) are obtained from Monte-Carlo (MC) method and the resistance extraction are performed by using device simulation based on transfer length method (TLM) with a-Si mobility and Schottky contact model. Under the small variations of ±5% from standard ρa-Si, electrical resistances are significantly changed with 30% variations from its typical characteristics in nanoscale TFTs.","PeriodicalId":6402,"journal":{"name":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2012.6243300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, we investigate the effects of amorphous silicon (a-Si) mass density variations on the electrical series and contact resistance of nanoscale structures for thin-film transistors (TFTs). Impurity distributions according to the variation of a-Si mass density (ρa-Si) are obtained from Monte-Carlo (MC) method and the resistance extraction are performed by using device simulation based on transfer length method (TLM) with a-Si mobility and Schottky contact model. Under the small variations of ±5% from standard ρa-Si, electrical resistances are significantly changed with 30% variations from its typical characteristics in nanoscale TFTs.