Kabirat Sulaiman Ayomide, T. N. M. Aris, M. Zolkepli
{"title":"Improving Brain Tumor Segmentation in MRI Images through Enhanced Convolutional Neural Networks","authors":"Kabirat Sulaiman Ayomide, T. N. M. Aris, M. Zolkepli","doi":"10.14569/ijacsa.2023.0140473","DOIUrl":null,"url":null,"abstract":"Achieving precise tumor segmentation is essential for accurate diagnosis. Since brain tumors segmentation require a significant training process, reducing the training time is critical for timely treatment. The research focuses on enhancing brain tumor segmentation in MRI images by using Convolutional Neural Networks and reducing training time by using MATLAB's GoogLeNet, anisotropic diffusion filtering, morphological operation, and sector vector machine for MRI images. The proposed method will allow for efficient analysis and management of enormous amounts of MRI image data, the earliest practicable early diagnosis, and assistance in the classification of normal, benign, or malignant patient cases. The SVM Classifier is used to find a cluster of tumors development in an MR slice, identify tumor cells, and assess the size of the tumor that appears to be present in order to diagnose brain tumors. The proposed method is evaluated using a dataset from Figshare that includes coronal, sagittal, and axial views of images taken with a T1-CE MRI modality. The accuracy of 2D tumor detection and segmentation are increased, enabling more 3D detection, and achieving a mean classification accuracy of 98% across system records. Finally, a hybrid approach of GoogLeNet deep learning algorithm and Convolution Neural NetworkSupport Vector Machines (CNN-SVM) deep learning is performed to increase the accuracy of tumor classification. The evaluations show that the proposed technique is significantly more effective than those currently in use. In the future, enhancement of the segmentation using artificial neural networks will help in the earlier and more precise detection of brain tumors. Early detection of brain tumors can benefit patients, healthcare providers, and the healthcare system as a whole. It can reduce healthcare costs associated with treating advanced stage tumors, and enables researchers to better understand the disease and develop more effective treatments. Keywords—MRI brain tumor; anisotropic; segmentation; SVM classifier; convolutional neural network","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
Achieving precise tumor segmentation is essential for accurate diagnosis. Since brain tumors segmentation require a significant training process, reducing the training time is critical for timely treatment. The research focuses on enhancing brain tumor segmentation in MRI images by using Convolutional Neural Networks and reducing training time by using MATLAB's GoogLeNet, anisotropic diffusion filtering, morphological operation, and sector vector machine for MRI images. The proposed method will allow for efficient analysis and management of enormous amounts of MRI image data, the earliest practicable early diagnosis, and assistance in the classification of normal, benign, or malignant patient cases. The SVM Classifier is used to find a cluster of tumors development in an MR slice, identify tumor cells, and assess the size of the tumor that appears to be present in order to diagnose brain tumors. The proposed method is evaluated using a dataset from Figshare that includes coronal, sagittal, and axial views of images taken with a T1-CE MRI modality. The accuracy of 2D tumor detection and segmentation are increased, enabling more 3D detection, and achieving a mean classification accuracy of 98% across system records. Finally, a hybrid approach of GoogLeNet deep learning algorithm and Convolution Neural NetworkSupport Vector Machines (CNN-SVM) deep learning is performed to increase the accuracy of tumor classification. The evaluations show that the proposed technique is significantly more effective than those currently in use. In the future, enhancement of the segmentation using artificial neural networks will help in the earlier and more precise detection of brain tumors. Early detection of brain tumors can benefit patients, healthcare providers, and the healthcare system as a whole. It can reduce healthcare costs associated with treating advanced stage tumors, and enables researchers to better understand the disease and develop more effective treatments. Keywords—MRI brain tumor; anisotropic; segmentation; SVM classifier; convolutional neural network
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications