Laplacian integral graphs with a given degreee sequence constraint

A. Novanta, C. Oliveira, L. de Lima
{"title":"Laplacian integral graphs with a given degreee sequence constraint","authors":"A. Novanta, C. Oliveira, L. de Lima","doi":"10.22199/issn.0717-6279-4753","DOIUrl":null,"url":null,"abstract":"Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) - A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral is all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all L-integral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.","PeriodicalId":8442,"journal":{"name":"arXiv: Combinatorics","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22199/issn.0717-6279-4753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph on n vertices. The Laplacian matrix of G, denoted by L(G), is defined as L(G) = D(G) - A(G), where A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the vertex degrees of G. A graph G is said to be L-integral is all eigenvalues of the matrix L(G) are integers. In this paper, we characterize all L-integral non-bipartite graphs among all connected graphs with at most two vertices of degree larger than or equal to three.
给定次序列约束的拉普拉斯积分图
设G是一个有n个顶点的图。G的拉普拉斯矩阵,用L(G)表示,定义为L(G) = D(G) - A(G),其中A(G)是G的邻接矩阵,D(G)是G的顶点度的对角矩阵。图G被称为L-积分是指矩阵L(G)的所有特征值都是整数。在所有连通图中,我们刻画了所有l -积分的非二部图,其中最多有两个顶点大于或等于3次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信