Data Science Application for Creation of Maternal Morbidity and Mortality Predictive Software

R. Domínguez-Domínguez, Germán H. Alférez, Verenice González-Mejia, Norbet Donías
{"title":"Data Science Application for Creation of Maternal Morbidity and Mortality Predictive Software","authors":"R. Domínguez-Domínguez, Germán H. Alférez, Verenice González-Mejia, Norbet Donías","doi":"10.54808/wmsci2023.01.1","DOIUrl":null,"url":null,"abstract":"In Mexico, the estimated Maternal Mortality Ratio is 34.6 deaths per 100,000 estimated births. Consequently, healthcare facilities and services have given precedence to prenatal care, childbirth services, and postpartum care. In Mexico, the Ministry of Health maintains an open database concerning maternal deaths, encompassing 58 variables. Among these variables is the CIE (International Statistical Classification of Diseases and Related Health Problems), which covers a total of 248 diseases linked to maternal deaths. Currently, there is no software that classifies women undergoing pregnancy check-ups (according to their socio-clinical risk of mortality), using variables selected with data science. This project is rooted in the methodology advanced by International Business Machines (IBM) for the implementation of data science. The software's utilized model was constructed through the Naïve Bayes supervised learning algorithm, yielding an accuracy of 0.7236. The overall precision stood at 0.75, with an overall recall of 0.74, and an overall F1-score of 0.71. For the eclampsia during labor class, precision reached 0.71, recall was 0.94, and the F1- score attained 0.81. As for secondary or late postpartum hemorrhage, precision scored 0.81, recall measured 0.43, and the F1-score was 0.56.","PeriodicalId":30249,"journal":{"name":"Journal of Systemics Cybernetics and Informatics","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systemics Cybernetics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54808/wmsci2023.01.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Mexico, the estimated Maternal Mortality Ratio is 34.6 deaths per 100,000 estimated births. Consequently, healthcare facilities and services have given precedence to prenatal care, childbirth services, and postpartum care. In Mexico, the Ministry of Health maintains an open database concerning maternal deaths, encompassing 58 variables. Among these variables is the CIE (International Statistical Classification of Diseases and Related Health Problems), which covers a total of 248 diseases linked to maternal deaths. Currently, there is no software that classifies women undergoing pregnancy check-ups (according to their socio-clinical risk of mortality), using variables selected with data science. This project is rooted in the methodology advanced by International Business Machines (IBM) for the implementation of data science. The software's utilized model was constructed through the Naïve Bayes supervised learning algorithm, yielding an accuracy of 0.7236. The overall precision stood at 0.75, with an overall recall of 0.74, and an overall F1-score of 0.71. For the eclampsia during labor class, precision reached 0.71, recall was 0.94, and the F1- score attained 0.81. As for secondary or late postpartum hemorrhage, precision scored 0.81, recall measured 0.43, and the F1-score was 0.56.
数据科学应用于产妇发病率和死亡率预测软件的创建
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
44
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信