B. Wunderle, M. Springborn, D. May, C. Manier, M. Abo Ras, R. Mrossko, H. Oppermann, T. Xhonneux, T. Caroff, W. Maurer, R. Mitova
{"title":"Double-sided cooling and transient thermo-electrical management of Silicon on DCB assemblies for power converter modules: Design, technology and test","authors":"B. Wunderle, M. Springborn, D. May, C. Manier, M. Abo Ras, R. Mrossko, H. Oppermann, T. Xhonneux, T. Caroff, W. Maurer, R. Mitova","doi":"10.1109/ITHERM.2014.6892370","DOIUrl":null,"url":null,"abstract":"This paper deals with the system design, technology and test of a novel concept of integrating Silicon power dies along with thermo-electric coolers and a phase change heat buffer in order to thermally manage transients occurring during operation. The concept features double-sided cooling as well as new materials and joining technologies to integrate the dies such as transient liquid phase bonding/soldering and sintering. Coupled-field simulations are used to predict thermal performance and are verified by especially designed test stands to very good agreement.","PeriodicalId":12453,"journal":{"name":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"8 1","pages":"851-861"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2014.6892370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper deals with the system design, technology and test of a novel concept of integrating Silicon power dies along with thermo-electric coolers and a phase change heat buffer in order to thermally manage transients occurring during operation. The concept features double-sided cooling as well as new materials and joining technologies to integrate the dies such as transient liquid phase bonding/soldering and sintering. Coupled-field simulations are used to predict thermal performance and are verified by especially designed test stands to very good agreement.