Mining Web log data based on key path

Aibo Song, Zuo-Peng Liang, Mao-Xian Zhao, Yi-sheng Dong
{"title":"Mining Web log data based on key path","authors":"Aibo Song, Zuo-Peng Liang, Mao-Xian Zhao, Yi-sheng Dong","doi":"10.1109/ICMLC.2002.1176728","DOIUrl":null,"url":null,"abstract":"A Web log mining method is presented. First, minimal key path set (MKPS) is defined and an algorithm to find the MKPS online is given. At the same time, for any key path in the MPKS, this algorithm can find out all transactions relevant to it. After scanning the transaction database only once, a relevant matrix is set up, where the key paths in MKPS are taken as columns and the transactions are taken as rows. Compared to previous methods, our method considers the three major features of users' accessing the Web: ordinal, contiguous, and duplicate. Moreover, for clustering transactions, we have lesser dimensions than the previous method. Using the clustering algorithm based on the relevant matrix, better clustering results will be obtained more precisely and quickly. Experiments show the effectiveness of the method.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"34 1","pages":"150-155 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1176728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A Web log mining method is presented. First, minimal key path set (MKPS) is defined and an algorithm to find the MKPS online is given. At the same time, for any key path in the MPKS, this algorithm can find out all transactions relevant to it. After scanning the transaction database only once, a relevant matrix is set up, where the key paths in MKPS are taken as columns and the transactions are taken as rows. Compared to previous methods, our method considers the three major features of users' accessing the Web: ordinal, contiguous, and duplicate. Moreover, for clustering transactions, we have lesser dimensions than the previous method. Using the clustering algorithm based on the relevant matrix, better clustering results will be obtained more precisely and quickly. Experiments show the effectiveness of the method.
基于关键路径的Web日志数据挖掘
提出了一种Web日志挖掘方法。首先,定义了最小密钥路径集(MKPS),并给出了一种在线查找最小密钥路径集的算法。同时,对于MPKS中的任意密钥路径,该算法都能找出与之相关的所有事务。在扫描事务数据库一次之后,将建立一个相关的矩阵,其中MKPS中的关键路径作为列,事务作为行。与以前的方法相比,我们的方法考虑了用户访问Web的三个主要特征:顺序、连续和重复。此外,对于聚类事务,我们的维数比以前的方法少。采用基于相关矩阵的聚类算法,可以更准确、更快速地获得更好的聚类结果。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信