Trend analizi ve yapay sinir ağları: Tarımda bir uygulaması

Şenol Çelik, Nilay Köleoğlu
{"title":"Trend analizi ve yapay sinir ağları: Tarımda bir uygulaması","authors":"Şenol Çelik, Nilay Köleoğlu","doi":"10.26809/joa.7.1.03","DOIUrl":null,"url":null,"abstract":"Bu çalışmanın amacı Türkiye'de yıllara göre korunga üretim miktarının modelinin kurulması ve öngörü yapılmasında yapay sinir ağları (YSA) ve trend analizi kullanılarak üretim planı yapılabileceğini göstermektir.\n\nÇalışma, 1990-2020 dönemine ait verileri kapsamaktadır. YSA ve trend analizi geliştirilmesinde girdi parametresi olarak yıllar parametresi, çıkış parametresi olarak üretim miktarı kullanılmıştır. Trend analizinde doğrusal, karesel ve kübik modeller kullanılmıştır. YSA yönteminde aktivasyon fonksiyonu olarak Hiperbolik Tanjant Fonksiyonu kullanılmıştır.\n\nGeliştirilen modelin etkinliği Hata Kareler Ortalaması (MSE) ve determinasyon katsayısı (R2) gibi istatistiksel parametreler kullanılarak belirlenmiştir. Trend analizi ve YSA karşılaştırıldığında, en küçük hata kareler ortalaması (HKO) değerini veren YSA yöntemi daha iyi sonuçlar vermiştir. YSA’na göre öngörü yapılmıştır. Sonuçlar korunga üretiminin 2025 yılında 2020 yılına oranla bir düşüşte olacağını öngörmektedir. 2020 yılında 1 934 697 ton olan korunga üretiminin 2025 yılında %3.83’lük bir düşüşle 1 860 691 ton olacağı beklenmektedir.\n\nYSA, değişkenlerde meydana gelebilecek herhangi bir değişim karşısında ortaya çıkabilecek sonuçların tespitinin sağlanmasında ve bu yolla süreçlerin iyileştirilmesinde faydalı bir araçtır. YSA modellerinin üretim modellemesinde trend analizinden daha iyi sonuçlar verdiği görülmüştür.","PeriodicalId":23495,"journal":{"name":"Volume 7, Issue 1","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7, Issue 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26809/joa.7.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bu çalışmanın amacı Türkiye'de yıllara göre korunga üretim miktarının modelinin kurulması ve öngörü yapılmasında yapay sinir ağları (YSA) ve trend analizi kullanılarak üretim planı yapılabileceğini göstermektir. Çalışma, 1990-2020 dönemine ait verileri kapsamaktadır. YSA ve trend analizi geliştirilmesinde girdi parametresi olarak yıllar parametresi, çıkış parametresi olarak üretim miktarı kullanılmıştır. Trend analizinde doğrusal, karesel ve kübik modeller kullanılmıştır. YSA yönteminde aktivasyon fonksiyonu olarak Hiperbolik Tanjant Fonksiyonu kullanılmıştır. Geliştirilen modelin etkinliği Hata Kareler Ortalaması (MSE) ve determinasyon katsayısı (R2) gibi istatistiksel parametreler kullanılarak belirlenmiştir. Trend analizi ve YSA karşılaştırıldığında, en küçük hata kareler ortalaması (HKO) değerini veren YSA yöntemi daha iyi sonuçlar vermiştir. YSA’na göre öngörü yapılmıştır. Sonuçlar korunga üretiminin 2025 yılında 2020 yılına oranla bir düşüşte olacağını öngörmektedir. 2020 yılında 1 934 697 ton olan korunga üretiminin 2025 yılında %3.83’lük bir düşüşle 1 860 691 ton olacağı beklenmektedir. YSA, değişkenlerde meydana gelebilecek herhangi bir değişim karşısında ortaya çıkabilecek sonuçların tespitinin sağlanmasında ve bu yolla süreçlerin iyileştirilmesinde faydalı bir araçtır. YSA modellerinin üretim modellemesinde trend analizinden daha iyi sonuçlar verdiği görülmüştür.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信