Optimal well-posedness for the pressureless Euler–Navier–Stokes system

IF 0.5 4区 数学 Q3 MATHEMATICS
Xiaoping Zhai, Yiren Chen, Yongsheng Li, Yongye Zhao
{"title":"Optimal well-posedness for the pressureless Euler–Navier–Stokes system","authors":"Xiaoping Zhai, Yiren Chen, Yongsheng Li, Yongye Zhao","doi":"10.1063/5.0136429","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the Cauchy problem for the pressureless Euler–Navier–Stokes system in R3. We first establish the global small solutions of this system with critical regularity and then obtain the optimal time decay rate of the solutions by a suitable energy argument (independent of the spectral analysis). The proof crucially depends on non-standard product estimates and interpolations. In comparison with previous studies about time-decay by Choi and Jung [J. Math. Fluid Mech. 23, 99 (2021); arXiv:2112.14449], the smallness requirement of the low frequencies of initial data could be removed.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"78 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0136429","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we investigate the Cauchy problem for the pressureless Euler–Navier–Stokes system in R3. We first establish the global small solutions of this system with critical regularity and then obtain the optimal time decay rate of the solutions by a suitable energy argument (independent of the spectral analysis). The proof crucially depends on non-standard product estimates and interpolations. In comparison with previous studies about time-decay by Choi and Jung [J. Math. Fluid Mech. 23, 99 (2021); arXiv:2112.14449], the smallness requirement of the low frequencies of initial data could be removed.
无压Euler-Navier-Stokes系统的最优适定性
本文研究了三维无压Euler-Navier-Stokes系统的Cauchy问题。我们首先建立了该系统具有临界正则性的全局小解,然后通过合适的能量参数(独立于谱分析)获得了解的最优时间衰减率。证明主要依赖于非标准乘积估计和插值。与之前Choi和Jung关于时间衰减的研究比较[J]。数学。流体力学。23,99 (2021);[arXiv:2112.14449],可以去除初始数据低频的小度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信