PROVIDENCE: a Flexible Round-by-Round Risk-Limiting Audit

Oliver Broadrick, P. Vora, Filip Zag'orski
{"title":"PROVIDENCE: a Flexible Round-by-Round Risk-Limiting Audit","authors":"Oliver Broadrick, P. Vora, Filip Zag'orski","doi":"10.48550/arXiv.2210.08717","DOIUrl":null,"url":null,"abstract":"A Risk-Limiting Audit (RLA) is a statistical election tabulation audit with a rigorous error guarantee. We present ballot polling RLA PROVIDENCE, an audit with the efficiency of MINERVA and flexibility of BRAVO. We prove that PROVIDENCE is risk-limiting in the presence of an adversary who can choose subsequent round sizes given knowledge of previous samples. We describe a measure of audit workload as a function of the number of rounds, precincts touched, and ballots drawn.We quantify the problem of obtaining a misleading audit sample when rounds are too small, demonstrating the importance of the resulting constraint on audit planning. We present simulation results demonstrating the superiority of PROVIDENCE using these measures and describing an approach to planning audit round schedules. We describe the use of PROVIDENCE by the Rhode Island Board of Elections in a tabulation audit of the 2021 election. Our implementation of PROVIDENCE and audit planning tools in the open source R2B2 library should be useful to the states of Georgia and Pennsylvania, which are planning pre-certification ballot polling RLAs for the 2022 general election.","PeriodicalId":91597,"journal":{"name":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","volume":"30 1","pages":"6753-6770"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.08717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Risk-Limiting Audit (RLA) is a statistical election tabulation audit with a rigorous error guarantee. We present ballot polling RLA PROVIDENCE, an audit with the efficiency of MINERVA and flexibility of BRAVO. We prove that PROVIDENCE is risk-limiting in the presence of an adversary who can choose subsequent round sizes given knowledge of previous samples. We describe a measure of audit workload as a function of the number of rounds, precincts touched, and ballots drawn.We quantify the problem of obtaining a misleading audit sample when rounds are too small, demonstrating the importance of the resulting constraint on audit planning. We present simulation results demonstrating the superiority of PROVIDENCE using these measures and describing an approach to planning audit round schedules. We describe the use of PROVIDENCE by the Rhode Island Board of Elections in a tabulation audit of the 2021 election. Our implementation of PROVIDENCE and audit planning tools in the open source R2B2 library should be useful to the states of Georgia and Pennsylvania, which are planning pre-certification ballot polling RLAs for the 2022 general election.
普罗维登斯:灵活的逐轮风险限制审计
风险限制审计(RLA)是一种具有严格错误保证的统计选举制表审计。我们提出投票投票RLA普罗维登斯,审计与MINERVA的效率和BRAVO的灵活性。我们证明了在对手存在的情况下,普罗维登斯是风险限制的,对手可以在给定之前样本的知识的情况下选择后续的轮大小。我们将审计工作量的度量描述为轮数、涉及的选区和抽到的选票的函数。我们量化了当轮数过小时获得误导性审计样本的问题,证明由此产生的约束对审计计划的重要性。我们提出了模拟结果,证明了使用这些措施的普罗维登斯的优越性,并描述了一种规划审计轮时间表的方法。我们描述了罗德岛选举委员会在2021年选举的制表审计中使用PROVIDENCE。我们在开源R2B2库中实现的PROVIDENCE和审计规划工具应该对乔治亚州和宾夕法尼亚州有用,这两个州正在为2022年大选计划预认证投票投票RLAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信