{"title":"Spectral stability of periodic waves for the Zakharov system","authors":"S. Hakkaev, M. Stanislavova, A. Stefanov","doi":"10.1063/5.0106133","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"40 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0106133","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the stability of periodic traveling waves of dnoidal type, of the Zakharov system. This problem was considered in a study of Angulo and Brango [Nonlinearity 24, 2913 (2011)]. In particular, it was shown that under a technical condition on the perturbation, such waves are orbitally stable, with respect to perturbations of the same period. Our main result fills up the gap created by the aforementioned technical condition. More precisely, we show that for all natural values of the parameters, the periodic dnoidal waves are spectrally stable.
期刊介绍:
Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects:
mathematical problems of modern physics;
complex analysis and its applications;
asymptotic problems of differential equations;
spectral theory including inverse problems and their applications;
geometry in large and differential geometry;
functional analysis, theory of representations, and operator algebras including ergodic theory.
The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.