J. I. Carreno-Saavedra, T. Ros-Yáñez, C. I. Garcia, E. Hernández-Durán, R. A. Iquilio, F. M. Castro Cerda
{"title":"Application of ultrafast heating and tempering to plate steel","authors":"J. I. Carreno-Saavedra, T. Ros-Yáñez, C. I. Garcia, E. Hernández-Durán, R. A. Iquilio, F. M. Castro Cerda","doi":"10.1080/02670836.2023.2202020","DOIUrl":null,"url":null,"abstract":"The microstructure and tensile properties were studied in a low-alloy steel plate treated under ultra-fast heating, quenching, and tempering. The microstructure after heat-treatments was predominantly martensite, with low fraction of bainite and ferrite. The tensile tests showed a 100 MPa improvement in strength and a doubling of the total elongation with the increase in heating rate. The tempering process considerably enhanced the ductility from 1–4% to up to 14% in the samples treated at fast heating rates..Furthermore, the work hardening capacity of ultra-fast heated steel was superior compared to steel treated under conventional quenching and tempering. The results suggest that the tempering stage after ultra-fast heat-treatments and quenching further improves the properties compared to the standard quenched and tempered condition.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"1 1","pages":"2417 - 2432"},"PeriodicalIF":1.7000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2202020","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The microstructure and tensile properties were studied in a low-alloy steel plate treated under ultra-fast heating, quenching, and tempering. The microstructure after heat-treatments was predominantly martensite, with low fraction of bainite and ferrite. The tensile tests showed a 100 MPa improvement in strength and a doubling of the total elongation with the increase in heating rate. The tempering process considerably enhanced the ductility from 1–4% to up to 14% in the samples treated at fast heating rates..Furthermore, the work hardening capacity of ultra-fast heated steel was superior compared to steel treated under conventional quenching and tempering. The results suggest that the tempering stage after ultra-fast heat-treatments and quenching further improves the properties compared to the standard quenched and tempered condition.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.