{"title":"Euler-Lagrangian approach to 3D stochastic Euler equations","authors":"F. Flandoli, Dejun Luo","doi":"10.3934/JGM.2019008","DOIUrl":null,"url":null,"abstract":"3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hoelder spaces is proved from the Euler-Lagrangian formulation.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2019008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 15
Abstract
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constantin-Iyer type representation in Euler-Lagrangian form is given, based on stochastic characteristics. Local existence and uniqueness of solutions in suitable Hoelder spaces is proved from the Euler-Lagrangian formulation.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.