Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition

R. Agarwal, H. Al-Hutami, B. Ahmad, Boshra Alharbi
{"title":"Existence and Stability Results for Fractional Hybrid q-Difference Equations with q-Integro-Initial Condition","authors":"R. Agarwal, H. Al-Hutami, B. Ahmad, Boshra Alharbi","doi":"10.3390/foundations2030048","DOIUrl":null,"url":null,"abstract":"This article is concerned with the study of a new class of hybrid fractional q-integro-difference equations involving Caputo type q-derivatives and Riemann-Liouville q-integrals of different orders with a nonlocal q-integro-initial condition. An existence result for the given problem is obtained by means of Krasnoselskii’s fixed point theorem, whereas the uniqueness of its solutions is shown by applying the Banach contraction mapping principle. We also discuss the stability of solutions of the problem at hand and find that it depends on the nonlocal parameter in contrast to the initial position of the domain. To demonstrate the application of the obtained results, examples are constructed.","PeriodicalId":81291,"journal":{"name":"Foundations","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/foundations2030048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This article is concerned with the study of a new class of hybrid fractional q-integro-difference equations involving Caputo type q-derivatives and Riemann-Liouville q-integrals of different orders with a nonlocal q-integro-initial condition. An existence result for the given problem is obtained by means of Krasnoselskii’s fixed point theorem, whereas the uniqueness of its solutions is shown by applying the Banach contraction mapping principle. We also discuss the stability of solutions of the problem at hand and find that it depends on the nonlocal parameter in contrast to the initial position of the domain. To demonstrate the application of the obtained results, examples are constructed.
具有q-积分初始条件的分数阶混合q-差分方程的存在性和稳定性结果
本文研究了一类新的杂化分数阶q-积分-差分方程,该方程包含了具有非局部q-积分初始条件的Caputo型q-导数和不同阶的Riemann-Liouville q-积分。利用Krasnoselskii不动点定理得到了该问题的存在性结果,并利用Banach收缩映射原理证明了该问题解的唯一性。我们还讨论了手头问题解的稳定性,并发现它依赖于非局部参数,而不是域的初始位置。为了说明所得结果的应用,构造了算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信