SSEC: Semantic Segmentation and Ensemble Classification Framework for Static Hand Gesture Recognition using RGB-D Data

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS
D. Nc, K. Suresh, Chandrasekhar V, D. R
{"title":"SSEC: Semantic Segmentation and Ensemble Classification Framework for Static Hand Gesture Recognition using RGB-D Data","authors":"D. Nc, K. Suresh, Chandrasekhar V, D. R","doi":"10.14569/ijacsa.2023.01403104","DOIUrl":null,"url":null,"abstract":"—Hand Gesture Recognition (HGR) refers to identifying various hand postures used in Sign Language Recognition (SLR) and Human Computer Interaction (HCI) applications. Complex background in uncontrolled environmental condition is the major challenging issue which impacts the recognition accuracy of HGR system. This can be effectively addressed by discarding the background using suitable semantic segmentation method, where it predicts the hand region pixels into foreground and rest of the pixels into background. In this paper, we have analyzed and evaluated well known semantic segmentation architectures for hand region segmentation using both RGB and depth data. Further, ensemble of segmented RGB and depth stream is used for hand gesture classification through probability score fusion. Experimental results shows that the proposed novel framework of Semantic Segmentation and Ensemble Classification (SSEC) is suitable for static hand gesture recognition and achieved F1-score of 88.91% on OUHANDS test dataset.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.01403104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

—Hand Gesture Recognition (HGR) refers to identifying various hand postures used in Sign Language Recognition (SLR) and Human Computer Interaction (HCI) applications. Complex background in uncontrolled environmental condition is the major challenging issue which impacts the recognition accuracy of HGR system. This can be effectively addressed by discarding the background using suitable semantic segmentation method, where it predicts the hand region pixels into foreground and rest of the pixels into background. In this paper, we have analyzed and evaluated well known semantic segmentation architectures for hand region segmentation using both RGB and depth data. Further, ensemble of segmented RGB and depth stream is used for hand gesture classification through probability score fusion. Experimental results shows that the proposed novel framework of Semantic Segmentation and Ensemble Classification (SSEC) is suitable for static hand gesture recognition and achieved F1-score of 88.91% on OUHANDS test dataset.
基于RGB-D数据的静态手势识别语义分割和集成分类框架
手势识别(hand Gesture Recognition, HGR)是指识别在手语识别(Sign Language Recognition, SLR)和人机交互(Human Computer Interaction, HCI)应用中使用的各种手势。在不可控的环境条件下,复杂背景是影响HGR系统识别精度的主要挑战。这可以通过使用合适的语义分割方法来有效地解决,该方法将手部区域像素预测到前景,其余像素预测到背景。在本文中,我们分析和评估了使用RGB和深度数据进行手部区域分割的知名语义分割架构。进一步,通过概率分数融合,将分割后的RGB流和深度流集成到手势分类中。实验结果表明,本文提出的语义分割与集成分类(SSEC)框架适用于静态手势识别,在OUHANDS测试数据集上获得了88.91%的f1分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信