{"title":"Wettability adjustment to enhance mass transfer for heterogeneous electrocatalysis and photocatalysis","authors":"Ang Li , Peng Zhang , Erjun Kan , Jinlong Gong","doi":"10.1016/j.esci.2023.100157","DOIUrl":null,"url":null,"abstract":"<div><p>This review describes recent advances in wettability adjustment to improve the main green energy conversion and storage systems, <em>i.e.</em>, photocatalysis and electrocatalysis. Because both are redox reactions involving electron behavior, they follow a similar pattern in the surface reaction step, which is related to wettability adjustment. Thus, we consider photocatalysis and electrocatalysis together in terms of mass transfer adjustment based on commonalities, aiming to understand the fundamentals more deeply and bring greater mutual inspiration to photocatalysis and electrocatalysis. The theoretical basis is first laid out, and then various strategies are introduced. Subsequently, according to the different requirements of mass transfer, we classify the photocatalytic and electrocatalytic reactions into gas consumption reactions preferring hydrophobic surfaces, and gas evolution reactions preferring hydrophilic surfaces. Pollutant degradation reactions involving different water-soluble substrates are also mentioned. Further, we introduce the specific optimization effect of wettability regulation on the reaction, and the mechanism behind the effect. This comprehensive and insightful review will provide a strategic guide to the reasonable design and development of wettability-optimized photocatalytic and electrocatalytic systems.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 1","pages":"Article 100157"},"PeriodicalIF":42.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723000885/pdfft?md5=ea049a7b3fefd83316d43935a3378d2d&pid=1-s2.0-S2667141723000885-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723000885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
This review describes recent advances in wettability adjustment to improve the main green energy conversion and storage systems, i.e., photocatalysis and electrocatalysis. Because both are redox reactions involving electron behavior, they follow a similar pattern in the surface reaction step, which is related to wettability adjustment. Thus, we consider photocatalysis and electrocatalysis together in terms of mass transfer adjustment based on commonalities, aiming to understand the fundamentals more deeply and bring greater mutual inspiration to photocatalysis and electrocatalysis. The theoretical basis is first laid out, and then various strategies are introduced. Subsequently, according to the different requirements of mass transfer, we classify the photocatalytic and electrocatalytic reactions into gas consumption reactions preferring hydrophobic surfaces, and gas evolution reactions preferring hydrophilic surfaces. Pollutant degradation reactions involving different water-soluble substrates are also mentioned. Further, we introduce the specific optimization effect of wettability regulation on the reaction, and the mechanism behind the effect. This comprehensive and insightful review will provide a strategic guide to the reasonable design and development of wettability-optimized photocatalytic and electrocatalytic systems.