Weibin Zhu, M. White, D. W. Hoch, G. Nellis, S. Klein, Y. Gianchandani
{"title":"Two approaches to micromachining si heat exchanger for Joule-Thomson cryosurgical probes","authors":"Weibin Zhu, M. White, D. W. Hoch, G. Nellis, S. Klein, Y. Gianchandani","doi":"10.1109/MEMSYS.2007.4433062","DOIUrl":null,"url":null,"abstract":"This paper describes results from two types of micromachined recuperative heat exchangers intended for Joule-Thomson (J-T) cryosurgical probes, which require high stream-to-stream thermal conductance while restricting parasitic stream-wise (axial) conduction. In design A, rows of fins composed of high conductivity silicon are bonded onto a 100 mum thick base plate composed of low conductivity Pyrex glass. This planar device has a footprint of 6times1.5 cm2 and 2.5 mm thickness, and is fabricated using a 5-mask process. In design B, numerous high-conductivity silicon plates alternating with low-conductivity Pyrex spacers are stacked together. This has a footprint of 1times1cm2, a length of 1.4 cm, and is fabricated using a 3-mask process. Preliminary experiments show that the primary performance constraint for design A is imposed by the compromise between mechanical robustness and transverse conductance of the thin glass base plate that separates the high pressure and low pressure streams. Design B enhances the robustness of the device and can sustain higher pressure.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"59 1","pages":"317-320"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper describes results from two types of micromachined recuperative heat exchangers intended for Joule-Thomson (J-T) cryosurgical probes, which require high stream-to-stream thermal conductance while restricting parasitic stream-wise (axial) conduction. In design A, rows of fins composed of high conductivity silicon are bonded onto a 100 mum thick base plate composed of low conductivity Pyrex glass. This planar device has a footprint of 6times1.5 cm2 and 2.5 mm thickness, and is fabricated using a 5-mask process. In design B, numerous high-conductivity silicon plates alternating with low-conductivity Pyrex spacers are stacked together. This has a footprint of 1times1cm2, a length of 1.4 cm, and is fabricated using a 3-mask process. Preliminary experiments show that the primary performance constraint for design A is imposed by the compromise between mechanical robustness and transverse conductance of the thin glass base plate that separates the high pressure and low pressure streams. Design B enhances the robustness of the device and can sustain higher pressure.