Quasipolynomial-time algorithms for Gibbs point processes

Matthew Jenssen, Marcus Michelen, M. Ravichandran
{"title":"Quasipolynomial-time algorithms for Gibbs point processes","authors":"Matthew Jenssen, Marcus Michelen, M. Ravichandran","doi":"10.1017/s0963548323000251","DOIUrl":null,"url":null,"abstract":"\n We demonstrate a quasipolynomial-time deterministic approximation algorithm for the partition function of a Gibbs point process interacting via a stable potential. This result holds for all activities \n \n \n \n$\\lambda$\n\n \n for which the partition function satisfies a zero-free assumption in a neighbourhood of the interval \n \n \n \n$[0,\\lambda ]$\n\n \n . As a corollary, for all finiterange stable potentials, we obtain a quasipolynomial-time deterministic algorithm for all \n \n \n \n$\\lambda \\lt 1/(e^{B + 1} \\hat C_\\phi )$\n\n \n where \n \n \n \n$\\hat C_\\phi$\n\n \n is a temperedness parameter and \n \n \n \n$B$\n\n \n is the stability constant of \n \n \n \n$\\phi$\n\n \n . In the special case of a repulsive potential such as the hard-sphere gas we improve the range of activity by a factor of at least \n \n \n \n$e^2$\n\n \n and obtain a quasipolynomial-time deterministic approximation algorithm for all \n \n \n \n$\\lambda \\lt e/\\Delta _\\phi$\n\n \n , where \n \n \n \n$\\Delta _\\phi$\n\n \n is the potential-weighted connective constant of the potential \n \n \n \n$\\phi$\n\n \n . Our algorithm approximates coefficients of the cluster expansion of the partition function and uses the interpolation method of Barvinok to extend this approximation throughout the zero-free region.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548323000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We demonstrate a quasipolynomial-time deterministic approximation algorithm for the partition function of a Gibbs point process interacting via a stable potential. This result holds for all activities $\lambda$ for which the partition function satisfies a zero-free assumption in a neighbourhood of the interval $[0,\lambda ]$ . As a corollary, for all finiterange stable potentials, we obtain a quasipolynomial-time deterministic algorithm for all $\lambda \lt 1/(e^{B + 1} \hat C_\phi )$ where $\hat C_\phi$ is a temperedness parameter and $B$ is the stability constant of $\phi$ . In the special case of a repulsive potential such as the hard-sphere gas we improve the range of activity by a factor of at least $e^2$ and obtain a quasipolynomial-time deterministic approximation algorithm for all $\lambda \lt e/\Delta _\phi$ , where $\Delta _\phi$ is the potential-weighted connective constant of the potential $\phi$ . Our algorithm approximates coefficients of the cluster expansion of the partition function and uses the interpolation method of Barvinok to extend this approximation throughout the zero-free region.
Gibbs点过程的拟多项式时间算法
本文给出了Gibbs点过程的配分函数的准多项式时间确定性逼近算法。这个结果适用于所有活动$\lambda$,其中配分函数在区间$[0,\lambda ]$的邻域中满足无零假设。作为推论,对于所有有限范围稳定势,我们得到了所有$\lambda \lt 1/(e^{B + 1} \hat C_\phi )$的准多项式时间确定性算法,其中$\hat C_\phi$为缓和参数,$B$为$\phi$的稳定常数。在排斥势的特殊情况下,如硬球气体,我们将活动范围提高了至少$e^2$,并获得了所有$\lambda \lt e/\Delta _\phi$的准多项式时间确定性近似算法,其中$\Delta _\phi$是势$\phi$的势加权连接常数。我们的算法近似配分函数的聚类展开系数,并使用Barvinok插值方法将该近似扩展到整个无零区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信