{"title":"On multidimensional Schur rings of finite groups","authors":"Gang Chen, Qingchun Ren, Ilia N. Ponomarenko","doi":"10.1515/jgth-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract For any finite group 𝐺 and a positive integer 𝑚, we define and study a Schur ring over the direct power G m G^{m} , which gives an algebraic interpretation of the partition of G m G^{m} obtained by the 𝑚-dimensional Weisfeiler–Leman algorithm. It is proved that this ring determines the group 𝐺 up to isomorphism if m ≥ 3 m\\geq 3 , and approaches the Schur ring associated with the group Aut ( G ) \\operatorname{Aut}(G) acting on G m G^{m} naturally if 𝑚 increases. It turns out that the problem of finding this limit ring is polynomial-time equivalent to the group isomorphism problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract For any finite group 𝐺 and a positive integer 𝑚, we define and study a Schur ring over the direct power G m G^{m} , which gives an algebraic interpretation of the partition of G m G^{m} obtained by the 𝑚-dimensional Weisfeiler–Leman algorithm. It is proved that this ring determines the group 𝐺 up to isomorphism if m ≥ 3 m\geq 3 , and approaches the Schur ring associated with the group Aut ( G ) \operatorname{Aut}(G) acting on G m G^{m} naturally if 𝑚 increases. It turns out that the problem of finding this limit ring is polynomial-time equivalent to the group isomorphism problem.