On multidimensional Schur rings of finite groups

Pub Date : 2023-02-02 DOI:10.1515/jgth-2023-0032
Gang Chen, Qingchun Ren, Ilia N. Ponomarenko
{"title":"On multidimensional Schur rings of finite groups","authors":"Gang Chen, Qingchun Ren, Ilia N. Ponomarenko","doi":"10.1515/jgth-2023-0032","DOIUrl":null,"url":null,"abstract":"Abstract For any finite group 𝐺 and a positive integer 𝑚, we define and study a Schur ring over the direct power G m G^{m} , which gives an algebraic interpretation of the partition of G m G^{m} obtained by the 𝑚-dimensional Weisfeiler–Leman algorithm. It is proved that this ring determines the group 𝐺 up to isomorphism if m ≥ 3 m\\geq 3 , and approaches the Schur ring associated with the group Aut ⁡ ( G ) \\operatorname{Aut}(G) acting on G m G^{m} naturally if 𝑚 increases. It turns out that the problem of finding this limit ring is polynomial-time equivalent to the group isomorphism problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2023-0032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract For any finite group 𝐺 and a positive integer 𝑚, we define and study a Schur ring over the direct power G m G^{m} , which gives an algebraic interpretation of the partition of G m G^{m} obtained by the 𝑚-dimensional Weisfeiler–Leman algorithm. It is proved that this ring determines the group 𝐺 up to isomorphism if m ≥ 3 m\geq 3 , and approaches the Schur ring associated with the group Aut ⁡ ( G ) \operatorname{Aut}(G) acting on G m G^{m} naturally if 𝑚 increases. It turns out that the problem of finding this limit ring is polynomial-time equivalent to the group isomorphism problem.
分享
查看原文
有限群的多维Schur环
摘要对于任意有限群𝐺和正整数𝑚,我们定义并研究了G m G^{m}上的直接幂上的Schur环,给出了用𝑚-dimensional Weisfeiler-Leman算法得到的G {m G^m}的划分的代数解释。证明了当m≥3m \geq 3时,此环决定了群𝐺达到同构;当𝑚增大时,此环接近于与群Aut (G) \operatorname{Aut} (G)相关联的舒尔环,该群作用于G {m G^m}。结果表明,寻找这个极限环的问题与群同构问题是多项式时间等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信