{"title":"The Excitonic Susceptibility Function in Semimetal/semiconductor Materials: Formation of the Excitonic Condensate State","authors":"T. Do","doi":"10.15625/0868-3166/16748","DOIUrl":null,"url":null,"abstract":"The condensate state of excitons in semimetal/semiconductor materials has been considered by analyzing the excitonic susceptibility function in the 2D extended Falicov-Kimbol model including electron-phonon interaction. The excitonic susceptibility in the system has calculated by using the Hartree-Fock approximation. From numerical results, we have set up phase diagrams ofthe excitonic condensate state. Phase diagrams confirm that the electron-phonon coupling plays an important role as well as the Coulomb attraction does in establishing the excitonic condensed phase at low temperature. The condensate phase of excitons is found within a limited range of the Coulomb attraction as the electron-phonon coupling is large enough. Depending on theelectron-phonon coupling and the Coulomb attraction, the BCS-BEC crossover of the excitonic condensation phase has also been pointed out.","PeriodicalId":10571,"journal":{"name":"Communications in Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0868-3166/16748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The condensate state of excitons in semimetal/semiconductor materials has been considered by analyzing the excitonic susceptibility function in the 2D extended Falicov-Kimbol model including electron-phonon interaction. The excitonic susceptibility in the system has calculated by using the Hartree-Fock approximation. From numerical results, we have set up phase diagrams ofthe excitonic condensate state. Phase diagrams confirm that the electron-phonon coupling plays an important role as well as the Coulomb attraction does in establishing the excitonic condensed phase at low temperature. The condensate phase of excitons is found within a limited range of the Coulomb attraction as the electron-phonon coupling is large enough. Depending on theelectron-phonon coupling and the Coulomb attraction, the BCS-BEC crossover of the excitonic condensation phase has also been pointed out.